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Abstract 

 This dissertation is comprised of three related, but distinct projects. Chapters 1 and 2 

explore the processing of emotional stimuli and how emotional properties of stimuli interact with 

context, goals, schemas, and basic cognitive processes. Chapter 1 presents a functional MRI 

study showing that self-related processing in the medial prefrontal cortex (a brain region long 

associated with the self) is modulated by the emotional valence of social scenarios. Specifically, 

self-relevance only increased activation in this region for positive scenarios, suggesting the mPFC 

may be sensitive to self-positivity biases and may even play a role in maintaining these biases. 

Chapter 2 reviews the late positive potential of the ERP commonly observed to emotional stimuli,  

proposes a functional theory of this component, and presents an initial study testing this theory. 

Chapter 3 is a methodological chapter exploring issues in the statistical analysis of ERP data, 

particularly the problem of multiple comparisons presented by the large amount of data across 

time and space. I present new software to implement permutation-based mass univariate 

statistics for factorial designs, and simulation data on the relative power and flexibility of these 

statistical tests. 
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General Introduction 

 This dissertation is comprised of three related, but distinct, projects. Chapters 1 and 2 

explore the processing of emotional stimuli and how emotional properties of stimuli interact with 

context, goals, schemas, and basic cognitive processes. Chapter 3 is a methodological chapter 

exploring issues in the statistical analysis of ERP data, presenting new software to implement 

permutation-based mass univariate statistics, and presenting novel simulation data on the relative 

power and flexibility of these statistical tests. 

In Chapter 1, I present a functional MRI study examining the processing of self-relevant 

and non-self-relevant scenarios with different emotional content. This work builds on two key 

literatures. First, a large literature examining the neural correlates of self has identified the medial 

prefrontal cortex as the brain region most consistently associated with self-related processing. 

Second, a large behavioral literature suggests that most people have an (unrealistically) positively 

biased self-schema, and we have recently shown effects of this positivity bias on the N400 

component of the ERP (Fields & Kuperberg, 2015). Following form this, we were interested in 

whether self-related activity in the mPFC would be modulated by emotional valence in the social 

vignettes that had previously shown self-relevance x emotion interactions in ERPs (Fields & 

Kuperberg, 2012, 2015, 2016). Indeed, we found that the mPFC showed greater activation for 

self-relevant scenarios only for positive vignettes. In Chapter 1, I discuss the implications of these 

findings for the function of the mPFC and future work on the neural correlates of self. 

Chapter 2 explores the processing of emotional stimuli, and the interaction of emotional 

properties of stimuli with many other factors (including self-relevance), in ERPs. In particular, I 

focus on the component of the ERP most consistently modulated by the emotion: the late positive 

component (LPC). I present a systematic review of the literature on this component to emotional 

words and language. From this, I propose that the LPC may be related to or synonymous with the 



www.manaraa.com

  3 

 

P300 component of the ERP and that it may reflect a process whereby the current model of the 

environment is updated in response to informative and important stimuli. I then present an ERP 

study intended as an initial investigation of this theory and discuss the future of research on the 

function of the LPC. 

Chapter 3 provides an in depth critique of traditional methods for analyzing ERP data. In 

particular, the ERP literature too often does not sufficiently address the multiple comparisons 

problem presented by a technique that generates large amounts of data across time and space 

(electrodes), thereby inflating the Type I error rate in ERP studies. This problem is often combined 

with low power, leading to studies and statistical tests that provide little evidence despite reporting 

statistically significant effects. This is likely one factor contributing to the complicated and 

sometimes contradictory literature reviewed in Chapter 2. I discuss permutation-based mass 

univariate statistics as a solution to this problem and address two key barriers to the widespread 

adoption of these techniques. First, current implementations of these techniques do not allow for 

factorial designs and the testing of interaction effects. I introduce new software to implement 

factorial versions of these statistics. Second, mass univariate techniques are often seen as 

sacrificing power to maintain flexibility and Type I error rate. I show via simulation studies that, in 

fact, these techniques can have greater power than traditional analysis approaches when 

constrained via the same spatial and temporal assumptions, while also maintaining reasonable 

power even when these assumptions are significantly relaxed. 
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Chapter 1: An fMRI investigation of valence effects on self-

related activation in mPFC 

Introduction 

The relationship between emotion and the self-concept lies at the core of human wellbeing. 

Understanding this complex relationship is critical for understanding motivation, learning, decision 

making, and mood disorders such as depression and anxiety (Beck, Rush, Shaw, & Emery, 1979; 

Dunning, Heath, & Suls, 2004; Goldin et al., 2013; Sharot & Garrett, 2016; Shestyuk & Deldin, 

2010; Taylor & Brown, 1988). Consequently, it is important that we understand the cognitive and 

neural mechanisms by which the self-concept and self-esteem are constructed and maintained 

(Beer, 2014; Beer & Flagan, 2015; Chavez & Heatherton, 2015; Sharot & Garrett, 2016). Here we 

report a functional MRI study examining the effects of differently valenced self-relevant and non-

self-relevant information on processing in the medial prefrontal cortex (mPFC), a region that has 

regularly been associated with the self. We begin by reviewing the social cognitive neuroscience 

literature on the self, and then discuss interactions with the self-concept and associated motivated 

processes. 

Medial prefrontal cortex and the social cognitive neuroscience of self  

The self has been long been a topic of investigation in philosophy and psychology (Swann 

& Bosson, 2010). As functional MRI and other neuroimaging methods have become widely 

available to study the intact, healthy brain, researchers have investigated the neural basis of the 

self. Social and cognitive neuroscientists have asked whether the self is processed uniquely in 

the brain and whether there might be regions of the brain specialized for processing self-related 

information. In the neuroimaging literature, a network of brain regions has been associated with 

self-related processing including the temporal poles, temporal-parietal junction, and much of the 

cortical midline, including medial prefrontal cortex (mPFC), precuneus, and the posterior cingulate 
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cortex (Legrand & Ruby, 2009; Northoff et al., 2006; Qin, Duncan, & Northoff, 2013). Within this 

network, the region most consistently associated with self-related processing is the mPFC. 

However, there has been much debate about whether this region (or any subsection of it) is 

specialized for self-related processing and what its function might be.  

Empirically, it is clear that the mPFC is regularly activated by self versus other contrasts 

(Araujo, Kaplan, & Damasio, 2013; Denny, Kober, Wager, & Ochsner, 2012; Northoff et al., 2006; 

D. D. Wagner, Haxby, & Heatherton, 2012). But it is also activated when thinking about other 

people (Amodio & Frith, 2006; Saxe, 2009; Van Overwalle, 2009; D. D. Wagner, Kelley, Haxby, & 

Heatherton, 2016; Welborn & Lieberman, 2015), as well as in non-social domains (Legrand & 

Ruby, 2009; Spreng, Mar, & Kim, 2009). Interpreting this pattern of results has proven difficult for 

a number of reasons. First, the mPFC is a large region and it is possible that only a sub-region or 

subset of neurons in the mPFC is specialized for the self (Denny et al., 2012). Second, it is 

possible that mPFC activations that don’t initially appear self-related are nevertheless due to 

processing of information in relation to the self. For example, it may be that mPFC is activated by 

evaluations and mental state attributions of others because we understand others via simulation 

or comparison to ourselves (e.g., Mitchell, 2009; Uddin, Iacoboni, Lange, & Keenan, 2007). Finally, 

the opposite could also be true: activations that appear to be self-related may actually be due to 

confounds across experimental conditions. There are a number of challenges in studying the self, 

and it is especially difficult to develop an appropriate control condition since self and non-self 

conditions almost always differ on properties other than self-relevance such as familiarity, 

emotional associations, depth of knowledge, etc. (Gillihan & Farah, 2005; Legrand & Ruby, 2009). 

It may be that it is these factors, rather than the self per se, that is driving mPFC activations. Thus, 

it is difficult to establish that any given activation either is or isn’t related to the self specifically. 

Given these challenges, it is not surprising that theories of the function of the mPFC are 

diverse. One perspective is that mPFC activation reflects a domain general process that is simply 



www.manaraa.com

  6 

 

often increased during self-related processing. For example, the mPFC has been argued to be 

part of a network supporting domain general inferential processing (Legrand & Ruby, 2009) or 

allowing people to consider situations other than the immediate present reality (i.e., “self-

projection”; Buckner & Carroll, 2007). Others have argued that the mPFC is specialized for 

processing of social information and/or mental states and is engaged whether the target of 

processing is the self or others (Amodio & Frith, 2006; Saxe, 2009; Zaki & Ochsner, 2011). Finally, 

some researchers have argued that some part of the mPFC is specialized for self-related 

processing. The dorsal mPFC (dmPFC) has been proposed to compute inferences about or 

evaluation of the self (Northoff & Bermpohl, 2004; Uddin et al., 2007), while the ventral mPFC 

(vmPFC) is argued to compute or represent the value or meaning of a stimulus to the self 

(Abraham, 2013; D'Argembeau, 2013; Flagan & Beer, 2013). 

Whatever its precise function, the consistent activation of the mPFC by self-related stimuli 

and conditions shows that it plays an important role in processing information about the self. It is 

therefore worth asking how factors known to be important in self-related processing impact mPFC 

activation. Indeed, investigating such factors may lead to a better understanding of the function 

of the mPFC. 

Positive self-evaluations, motivated information processing, and the social psychology 

of self 

 Interestingly, there is some discrepancy between the study of the self in the social 

psychological and cognitive neuroscience literatures (Chavez & Heatherton, 2015; Flagan & Beer, 

2013). While the neuroscience literature has often focused on the search for self-specific neural 

regions or sought to understand how the self is represented in the brain, the social and cognitive 

literature on the self has emphasized the way in which the self as a schema organizes information. 

One particular focus has been the role of motivated reasoning and positive biases with regard to 

the self.  
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It is well established that people tend to view themselves in an unrealistically positive light 

when compared to others or objective standards. We see ourselves as having more positive (and 

less negative) traits and abilities than others and we expect more positive outcomes for ourselves 

across many domains (Alicke & Govorun, 2005; Armor & Taylor, 2002; Dunning et al., 2004; Taylor 

& Brown, 1988). We are able to maintain these positive self-evaluations via motivated reasoning 

and asymmetric treatment of positive and negative self-related information. In response to 

negative information about the self, we employ a variety of strategies such as re-interpreting 

outcomes, shifting standards of comparison, and attributing negative outcomes to external, 

situation-specific factors (Armor & Taylor, 2002; Mezulis, Abramson, Hyde, & Hankin, 2004). The 

result is that beliefs are more likely to be updated in response to positive information than negative 

information about the self (Sharot & Garrett, 2016). In fact, work with Bayesian learning models 

has shown that models best explain behavior when separate learning rates are assumed for 

positive and negative information (reviewed in Sharot & Garrett, 2016).  

This “self-positivity bias” has important real-world consequences. Positive self-views are 

often seen as key for self-esteem and motivation (Sharot & Garrett, 2016; Taylor & Brown, 1988) 

and lack of a self-positivity bias is associated with mood disorders (Beck et al., 1979; Garrett et 

al., 2014; Goldin et al., 2013; Shestyuk & Deldin, 2010). In addition, modelling work shows that 

unrealistic positivity is adaptive in many circumstances (D. D. P. Johnson & Fowler, 2011). On the 

other hand, there are negative consequences to positive illusions such as failure to adjust 

behavior in response to knowledge of disease risk factors and inadequate studying by students 

who have an unrealistic perception of their comprehension (Dunning et al., 2004; D. D. P. Johnson 

& Fowler, 2011). It is therefore important to understand the neurocognitive mechanisms that 

underlie unrealistic self-positivity (Chavez & Heatherton, 2015). 

In previous work, we have used ERPs to examine effects of the self-positivity bias during 

processing of social vignettes (Fields & Kuperberg, 2015). Specifically, we examined whether the 
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N400 component of the ERP could be used as a measure of positively biased self-views. The 

N400 is a component that is reduced to the extent that the semantic features of a word (or other 

meaningful stimuli) match expectations generated by the preceding context (Kutas & Federmeier, 

2011). We therefore hypothesized that positive words would elicit a smaller N400 in self-relevant 

(versus other-relevant) contexts and that this may provide a more accurate and less biased 

measure of self-views than many self-report and behavioral measures (see Fields & Kuperberg, 

2015). We presented two-sentence scenarios with a neutral, positive, or negative critical word 

such as “A man knocks on Sandra’s hotel room door. She sees that he has a tray/gift/gun in his 

hand”. These scenarios were made self-relevant by simply changing the subject: “A man knocks 

on your hotel room door. You see that he has a tray/gift/gun in his hand” (see Brunyé, Ditman, 

Mahoney, Augustyn, & Taylor, 2009). As predicted, the N400 was reduced to positive words in 

self-relevant contexts (with no effect of self-relevance in neutral or negative scenarios). 

The present study 

Given the social psychological literature on positive self-evaluations and our ERP results, 

we were interested in how valence in the paradigm just described would modulate the effects of 

self-relevance in the mPFC. That question was the focus of the present work.  

Although previous work has examined the interaction of self-relevance and emotion in 

fMRI, most of these studies have established self-relevance via the task or participant’s ratings of 

stimuli (e.g., Chavez & Heatherton, 2015; Chavez, Heatherton, & Wagner, in press; Fossati et al., 

2003; Fossati et al., 2004; Moran, Macrae, Heatherton, Wyland, & Kelley, 2006; Ochsner et al., 

2004; Phan et al., 2004; see also, Lee & Siegle, 2012). This means that self-relevance was 

established differently than emotion and that in most cases participants themselves determined 

which stimuli were self-related, not the experimenters. 

Herbert, Herbert, and Pauli (2011) report an initial study that used bottom-up stimulus 

based manipulations for both emotion and self-relevance. They presented neutral, positive, and 
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negative words preceded by “my”, “his”, or “the”. In this study, self-relevance (i.e., “my”) increased 

effects of emotion in the vmPFC, an area often associated with emotion processing. This was true 

for both positive and negative words versus neutral words. However, when this paradigm was 

used in an ERP study (Herbert, Herbert, Ethofer, & Pauli, 2011), results did not show the 

interaction we previously observed on the N400. This may be due to the limited context provided 

by short noun phrases and the relatively weaker self-relevance of text in first-person compared to 

second-person (see Brunyé et al., 2009). We therefore wanted to extend these results to 

investigate the effects of the self-positivity bias in the mPFC using longer, more naturalistic 

scenarios. 

We presented two-sentence social vignettes that were either self-relevant or other relevant 

and that had a neutral, positive, or negative critical word in the second sentence (see example 

above). Our previous ERP results indicated that the processing of such scenarios interacts with 

the positively biased self-concept in a fast and relatively automatic manner. Here we were 

interested in whether such positive biases and motivated processing would affect self versus other 

activations in mPFC.  

 To the extent that mPFC activation reflects (or is a result of) the evaluation of stimuli as 

self-relevant or reflects activation of self-representations, it may be that activation will be greater 

for scenarios that participants find more plausible and congruent with their self-concept. Our ERP 

results and the literature reviewed above suggest this would be the positive self-relevant 

scenarios. This would predict a pattern of activation similar to that observed on the N400 in our 

ERP study, with greater self versus other effects for positive scenarios specifically. On the other 

hand, it is possible that scenarios incongruent with participants’ expectations will elicit greater 

activity in self-related regions as they attempt the more difficult process of integrating negative, 

self-relevant information with their (generally positive) self-concept. Either of these results is 

consistent with the idea that the self-positivity bias interacts with self-related processing in the 
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mPFC. In contrast, it is possible that mPFC activations will not interact with the emotion condition, 

which would suggest that the processing represented by mPFC activations is relatively 

independent of the biases and motivated processing studied by social psychologists. 

Methods 

Participants  

Seventeen female subjects were recruited through an advertisement on a Tufts University 

community website (tuftslife.com). Self-reported race and ethnicity was non-Hispanic White for 

12 participants, Hispanic for one participant, Asian for one participant, mixed Asian/White for two 

participants, and unreported for one participant. All participants were right-handed native English 

speakers (having learned no other language before the age of 5) between the ages of 18 and 23 

(M = 20.7, SD = 1.3), who reported no history of psychiatric or neurological disorders. Participants 

were paid for their participation and provided informed consent in accordance with the procedures 

of the Institutional Review Board of Massachusetts General Hospital.  

Stimuli 

Stimuli were a modified version of those used in our previous ERP work (Fields & 

Kuperberg, 2012, 2015, 2016).1 216 sets of two-sentence scenarios were developed, each with 

three Emotion conditions (positive, neutral, and negative) and two Self-Relevance conditions (self 

and other). These were crossed in a 3 x 2 factorial design so that there were six versions for each 

scenario: self-positive, self-neutral, self-negative, other-positive, other-neutral, and other-negative 

(see Table 1.1 for examples). 

  

                                                
1 The stimuli used in Fields and Kuperberg (2012, 2015, 2016) were modified so that length of the second 
sentence and CW position were more consistent (see below). We also eliminated 6 vignettes so that the 
scenarios would divide evenly across six runs. The stimuli were otherwise as similar as possible to our 
previous studies. For easy comparison, the same scenarios are reported in Table 1.1 as we have reported 
in our previous papers. 



www.manaraa.com

  11 

 

 

Other Self 

Positive Neutral Negative Positive Neutral Negative 

A man knocks 
on Sandra's 
hotel room door. 
She sees that he 
has a gift in his 
hand. 

A man knocks 
on Sandra's 
hotel room door. 
She sees that he 
has a tray in his 
hand. 

A man knocks 
on Sandra's 
hotel room door. 
She sees that he 
has a gun in his 
hand. 

A man knocks 
on your hotel 
room door. You 
see that he has 
a gift in his 
hand. 

A man knocks 
on your hotel 
room door. You 
see that he has 
a tray in his 
hand. 

A man knocks 
on your hotel 
room door. You 
see that he has 
a gun in his 
hand. 

Fletcher writes a 
poem for a 
class. His 
friends think it's 
a very beautiful 
composition. 

Fletcher writes a 
poem for a 
class. His 
friends think it's 
a very intricate 
composition. 

Fletcher writes a 
poem for a 
class. His 
friends think it's 
a very boring 
composition. 

You write a 
poem for a 
class. Your 
friends think it's 
a very beautiful 
composition. 

You write a 
poem for a 
class. Your 
friends think it's 
a very intricate 
composition. 

You write a 
poem for a 
class. Your 
friends think it's 
a very boring 
composition. 

Vince spends 
time with 
relatives over 
the break. This 
turns out to be a 
wonderful 
experience for 
him. 

Vince spends 
time with 
relatives over 
the break. This 
turns out to be a 
characteristic 
experience for 
him. 

Vince spends 
time with 
relatives over 
the break. This 
turns out to be a 
disastrous 
experience for 
him. 

You spend time 
with relatives 
over the break. 
This turns out to 
be a wonderful 
experience for 
you. 

You spend time 
with relatives 
over the break. 
This turns out to 
be a 
characteristic 
experience for 
you. 

You spend time 
with relatives 
over the break. 
This turns out to 
be a disastrous 
experience for 
you. 

After dinner, 
Lydia is involved 
in a discussion. 
She makes a 
few remarks that 
impress her 
friends. 

After dinner, 
Lydia is involved 
in a discussion. 
She makes a 
few remarks that 
surprise her 
friends. 

After dinner, 
Lydia is involved 
in a discussion. 
She makes a 
few remarks that 
hurt her friends. 

After dinner, you 
are involved in a 
discussion. You 
make a few 
remarks that 
impress your 
friends. 

After dinner, you 
are involved in a 
discussion. You 
make a few 
remarks that 
surprise your 
friends. 

After dinner, you 
are involved in a 
discussion. You 
make a few 
remarks that 
hurt your friends. 

Carmelo has 
been in his 
current job for 
over a year. He 
learns he is 
getting a bonus 
this December. 

Carmelo has 
been in his 
current job for 
over a year. He 
learns he is 
getting a transfer 
this December. 

Carmelo has 
been in his 
current job for 
over a year. He 
learns he is 
getting a pay-cut 
this December. 

You have been 
in your current 
job for over a 
year. You learn 
you are getting a 
bonus this 
December. 

You have been 
in your current 
job for over a 
year. You learn 
you are getting a 
transfer this 
December. 

You have been 
in your current 
job for over a 
year. You learn 
you are getting a 
pay-cut this 
December. 

Table 1.1: Examples of two-sentence scenarios in each of the six conditions. The critical word is underlined 
(but did not appear underlined in the actual stimulus lists). 

All scenarios were written in the present tense. The first sentence (4-13 words long) 

always introduced a situation involving one or more people, only one of which was specifically 

named (the protagonist), and it was always neutral or ambiguous in valence: e.g., A man knocks 

on Sandra’s hotel room door. The named protagonist was male half the time and female the other 

half. To create the self conditions, the named person was changed to “you”, e.g., A man knocks 
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on your hotel room door. In some scenarios this necessitated changing the conjugation of the 

verb, but the first sentence was otherwise identical across the self and other conditions. The 

second sentence (8-10 words) continued the scenario and was the same across all emotion 

conditions except for one word, the critical word, which was positive, neutral, or negative, e.g.: 

She/You see(s) that he has a gift/tray/gun in his hand. To obtain a roughly equivalent time course 

of neural response, the critical word was always the either the sixth word (48 scenarios) or seventh 

word (168 scenarios) of the sentence. The part of speech of the critical word was the same across 

the three Emotion conditions for each scenario: adjective for 130 scenarios, verb for 50 scenarios, 

and noun for 36 scenarios. The second sentence was otherwise emotionally neutral or ambiguous. 

All scenarios were written so that they would be plausible for most college students, both male 

and female. 

  Other Self 

  Neutral Positive Negative Neutral Positive Negative 

(log) HAL Frequency* 8.19(2.53) 8.28(2.44) 8.05(2.22) -- -- -- 

CW length (letters) 7.47(2.22) 7.64(2.39) 7.16(2.49) -- -- -- 

Scen. Length (char 
w/spaces) 

94.1(11.4) 94.2(11.3) 93.7(11.5) 92(11.6) 92.1(11.4) 91.5(11.6) 

Valence (CW) 4.31(0.56) 5.68(0.55) 2.32(0.56) -- -- -- 

Arousal (CW) 3.39(0.64) 4.48(0.82) 3.83(0.63) -- -- -- 

Table 1.2: Stimuli ratings and characteristics. Means are shown with standard deviations in parentheses. 
Valence and arousal were rated on seven point scales from very unpleasant and least arousing to very 
pleasant and most arousing respectively. “--” indicates that, for ratings conducted on the words in isolation 
from the scenario contexts, the values were the same in the self conditions as in the other conditions since 
the identical critical words were used (except for in six scenarios in which the verb was conjugated 
differently). *Some words did not exist in the HAL database and these were represented as null values in 
our calculations 

Procedure 

Stimulus presentation and task 

Scenarios were divided into six lists, which were counterbalanced such that the same 

critical word did not appear more than once in any list and a given scenario’s context did not 

appear more than once per list. Each of the six lists included 216 sentence pairs (36 in each 

condition), which were broken into six blocks of 36 sentence pairs. Participants were randomly 
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assigned to one of the lists. Stimuli were presented on a projector in white font centered on a 

black background. Each trial began with a fixation cross of variable duration (most commonly 2 

seconds but ranging up to 20 seconds) to introduce jitter. Fixation timings were determined using 

Optseq (https://surfer.nmr.mgh.harvard.edu/optseq) to optimize the ability to deconvolve the 

BOLD response. Each of the two sentences of the scenario were then presented in full for 4 

seconds.  

Six comprehension questions were randomly interspersed in each block and appeared for 

4 seconds directly after the second sentence of the scenario. For example, the scenario “Casper 

is/You are new on campus. His/Your classmates think he is/you are quite 

idiosyncratic/clever/dumb compared to others.” was followed by the question “Did Casper/you go 

to this school last year?” with the correct answer being “no”. Participants were instructed to a 

press a button corresponding to the index finger and middle finger for yes and no respectively 

before the question left the screen. 

MRI Acquisition 

Structural and functional magnetic resonance images were acquired using a 3T Siemens 

Trio scanner using a 32-channel head coil. FMRI data were acquired over six runs, each lasting 

for approximately 7 minutes and 38 seconds. In each run, 230 functional volumes (36 axial slices 

(AC-PC aligned), 3.2 mm slice thickness, .64 mm skip, 200 mm field of view, in-plane resolution 

of 3.125 mm) were acquired with a gradient-echo sequence (TR = 2s, TE = 25ms, flip angle = 77º, 

ascending acquisition order). In addition, at the beginning and end of the scanning session, we 

acquired two T1-weighted high-resolution structural images (1 mm isotropic multi-echo MPRAGE: 

TR = 2.53s, flip angle = 7º, four echoes with TE = 1.64ms, 3.5ms, 5.36ms, 7.22ms). We used the 

higher quality of the two structural scans from each subject (based on visual inspection) for the 

subsequent analysis. 

https://surfer.nmr.mgh.harvard.edu/optseq
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MRI processing and analysis 

 Pre-processing as well as the first and second level analyses of the fMRI data were 

conducted in SPM8 (www.fil.ion.ucl.ac.uk/spm), supplemented by additional add-on toolboxes 

(ArtRepair: cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html; Mazaika, Hoeft, 

Glover, & Reiss, 2009).  

 The first four images in each run were discarded to ensure that transient non-saturation 

effects did not affect the analysis. The next step was to detect spikes and interpolate these bad 

slices from surrounding images (using the ArtRepair toolbox). On average 0.3% of slices (range 

0 to 4.0%) were removed and interpolated in each run. Then, images were slice-time corrected 

and the volumes were realigned to the first images of each run and then to each other. The 

functional images were co-registered to the structural image by co-registering the mean functional 

image to the structural MPRAGE. The anatomical images were segmented into grey and white 

matter, and the spatial normalization parameters acquired during this step were used to normalize 

the functional images to the ICBM template for European brains. Finally, the images were 

smoothed with an 8 mm FWHM Gaussian kernel. 

 We modeled the data using a general linear model over 6 runs (following the experimental 

design described above). Each run had the following regressors: one for fixation, one for the first 

sentence of each scenario, six for the second sentence of each scenario (one for each condition 

created by the 3x2 design: Self-Positive, Self-Neutral, Self-Negative, Other-Positive, Other-

Neutral, and Other-Negative), and one for the comprehension questions. The trials were 

modeled from the start of the second sentence and the duration was the presentation time of the 

second sentence (4 s). All regressors were convolved with a canonical hemodynamic response 

function. The realignment parameters for movement correction were also included in the model.  

We defined the following contrasts to take to the second level for a random effects group 

analysis: the Self vs. Other contrast at each level of Emotion and each of the six conditions 
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created by the 3x2 design vs. Fixation. To test the interaction of Emotion and Self-Relevance, 

we used a within subjects ANOVA design matrix that consisted of one regressor for each individual 

subject and one regressor for the Self vs. Other contrast at each level of Emotion. To follow up 

significant interactions, we used separate one-sample t-test design matrices that consisted of a 

single regressor for the Self vs. Other contrast for each of the Emotion condition. In addition, we 

used six one-sample t-test design matrices to test each of the six conditions against baseline 

(fixation). 

Based on a priori hypotheses concerning the mPFC, we defined a region of interest (ROI) 

for this entire region. To create the ROI, we used Denny et al.’s (2012) anatomical definition of 

the mPFC in MNI space (|x|<25, y>15, z>−5). To exclude coordinates outside the brain, we 

intersected this with the MNI template used in the normalization preprocessing step. We report 

whole-brain effects at a voxel-level threshold of p < 0.001 and a small volume correction FWE-

corrected at the peak of a priori regions of interest described above. All reported coordinates are 

in MNI space. 

Results 

Behavioral data 

 Accuracy for the comprehension questions ranged from 72% to 100% with an average of 

88%. Participants failed to provide a response on only 3.1% of comprehension questions (an 

average of 1.1 of the 36 questions). If these trials are excluded, accuracy ranged from 81% to 

100% with an average of 91%. Thus, the behavioral data indicated that participants were reading 

and comprehending the scenarios. 

Whole brain analyses 

 When compared to baseline all six conditions activated visual areas in the occipital and 

temporal lobe as well as a large network of regions generally associated with sentence processing 
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including lateral temporal lobe and ventrolateral prefrontal cortex. These activations are reported 

in the Appendix. 

 The 3 x 2 ANOVA comparing the six conditions directly to each other did not reveal 

significant effects of Emotion, Self-Relevance, or an Emotion x Self-Relevance interaction in any 

brain region. 

Medial prefrontal small volume analysis 

 

Figure 1.1 Emotion x Self-Relevance interaction and follow-ups. The mPFC small volume analysis revealed 
a significant Self-Relevance x Emotion interaction centered at MNI 0, 60, 22. We followed-up this interaction 
by looking at self versus other activation within each emotion condition. Only the positive scenarios showed 
significant activations. 
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 For the ROI analysis within the anatomically defined mPFC, there were no significant main 

effects of Emotion or Self-Relevance. However, there was a significant Emotion x Self-Relevance 

interaction in a cluster centered at MNI coordinates 0, 60, 22 (cluster-level p(FWE) = .014, k = 

116, peak voxel level p = .047, z-score = 4.26). Follow-ups revealed that there was a significant 

effect of Self-Relevance in this area as well as more dorsal parts of the mPFC for positive 

scenarios (see Table 1.3, Figure 1.1), but not the negative or neutral. 

R/L 
Peak voxel  

p-value 
z-

score MNI (x, y, z) Cluster level 

L 0.003 5.10 -2, 60, 22 p(FWE) < .001,  
k = 506 L 0.009 4.80 -6, 62, 24 

R 0.066 4.24 8, 38, 46 p(FWE) = .001,  
k = 235 R 0.090 4.14 6, 46, 40 

Table 1.3: Self-positive vs. other-positive in the mPFC ROI. 

Discussion 

Following from our previous work with ERPs (Fields & Kuperberg, 2015), we had 

participants undergo fMRI while reading two-sentence social vignettes that were either 

contextually self-relevant or other-relevant and that contained a neutral, positive, or negative 

critical word in the second sentence. We observed an interaction of self-relevance and valence in 

the medial prefrontal cortex driven by increased activation for self-relevant versus other-relevant 

contexts specifically for the positive scenarios. 

Notably, this is the same general pattern of interaction that we observed on the N400 

component of the ERP (i.e., self-other effects for positive, but not neutral or negative scenarios; 

Fields & Kuperberg, 2015). Given what we know about the N400 (Federmeier & Laszlo, 2009; 

Kutas & Federmeier, 2011; Lau, Phillips, & Poeppel, 2008), the mPFC activation we observed is 

probably not the generator of the N400 effect (but see “Open Questions” later in this discussion). 

However, as we discuss below, these effects may be generated by the same underlying 

psychological mechanisms. 
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The social cognitive neuroscience of self-positivity 

As noted in the Introduction, motivation and positive biases have been at the core of the 

social psychological understanding of the self, but these factors have received less attention in 

the social neuroscience literature, which has focused more on investigating the core 

representation and processing of self (Chavez & Heatherton, 2015; Flagan & Beer, 2013). 

However, this is beginning to change. In a series of studies, Jennifer Beer and colleagues have 

examined the role of multiple frontal regions and their connections with subcortical regions in self-

insight and unrealistic self-positivity. Interestingly, the portions of mPFC most often associated 

with the self have not emerged as a significant part of the network underlying self-positivity in the 

explicit social comparison and judgement tasks they used. Instead they have identified a key role 

for the medial orbitofrontal cortex (mOFC) operating in two different networks of regions 

depending on whether self-esteem is under threat (reviewed in Beer, 2014), as well as the ventral 

anterior cingulate (vACC) as a region that is important for identifying opportunities for self-

enhancement (reviewed in Beer & Flagan, 2015). 

In another line of work, Chavez et al. (in press) have used multi-voxel pattern (MVPA) 

analysis to suggest that the self and positive valence may be represented by overlapping 

populations of neurons in the ventral medial prefrontal cortex. Specifically, they showed 

representational similarity at the voxel level for thinking about the self and viewing positive 

pictures and found that a MVPA pattern classifier trained to recognize positive valence can 

distinguish self-relevant from non-self-relevant conditions at above chance performance. They 

interpret these results as showing “that positive affect is a key component to self-referential 

thought”. However, like the findings reviewed in the previous paragraph, these effects were in an 

area of mPFC significantly ventral to the effects we observed. 

Our work adds to these findings by suggesting that the “classic” self-other mPFC effect in 

more dorsal regions of mPFC (cf. Denny et al., 2012) can also be modulated by positive biases 
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and associated motivated processes. As discussed in the Introduction, there is disagreement 

about the function of the mPFC and the extent to which it is specialized for self-related (or social) 

processing (Denny et al., 2012; Legrand & Ruby, 2009; Northoff & Bermpohl, 2004; Saxe, 2009; 

Uddin et al., 2007; Zaki & Ochsner, 2011). However, its consistent activation by self-related 

experimental conditions (Denny et al., 2012; Legrand & Ruby, 2009; Northoff et al., 2006; Qin et 

al., 2013) suggests that it plays an important role in processing information about the self. Our 

results therefore suggest that a core aspect of self-related processing is engaged to a greater 

degree when information matches positive self-views. 

In fact, this greater activation for positive self-information in more dorsal regions of mFPC 

may be part of the process by which unrealistic self-positivity is maintained. As noted in the 

Introduction, we are more likely to update our beliefs in response to positive than negative 

information about the self (Sharot & Garrett, 2016). Interestingly, some previous fMRI studies 

examining how unrealistic optimism is maintained have linked mPFC activity specifically to belief 

updating in response to positive self-related information. Sharot, Korn, and Dolan (2011) had 

participants estimate their likelihood of experiencing various adverse events and then presented 

the actual average probability of that event. After this task, they re-assessed participants’ 

estimates of the likelihood of each event. They replicated findings that participants were 

unrealistically optimistic and that they updated their beliefs less in response to unexpectedly 

negative information than unexpectedly positive. In addition, they found that the same region of 

mPFC that showed the interaction observed in the present study was related to tracking prediction 

errors and belief updating specifically for unexpectedly positive (but not negative) feedback. 

Garrett et al. (2014) replicated these results and extended them to depression patients (see also 

Sharot & Garrett, 2016 for general discussion).  

Further support for the importance of the mPFC to self-positivity comes from work 

examining the role of mPFC in self-esteem. Chavez and Heatherton (2015) have shown that 
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structural connectivity between the mPFC and the ventral striatum is associated with trait self-

esteem while functional connectivity between these regions is associated with state self-esteem. 

In follow-up work, they have shown that structural connective between mPFC and ventral striatum 

predicts self-esteem 8 months later (Chavez & Heatherton, 2017). Thus, the self versus other 

activation seen specifically to positive scenarios in our study may not just reflect the fact that these 

scenarios were perceived as more self-relevant, it may also be related to the cognitive processes 

whereby the self-positivity bias is constructed and maintained.2 

More generally, our findings suggest that simply comparing self-relevant versus non-self-

relevant conditions may not reveal how the self is processed or represented in the brain per se. 

Instead, neural activity in response to self-relevant information is likely to reflect how the specific 

nature of that information interacts with aspects of the self-schema. Valence may be particularly 

important in this regard, and our results suggest that the positive biases and forms of motivated 

reasoning that social psychologists have studied for decades can also influence self-related 

mPFC activity. Future research should continue to take these processes into account and explore 

their implications for a social neuroscientific understanding of the self (see also Beer, 2014; Beer 

& Flagan, 2015; Chavez & Heatherton, 2015; Chavez et al., in press). 

Open questions 

 Above we noted that while the pattern of interaction in mPFC here and on the N400 in our 

previous work (Fields & Kuperberg, 2015) was the same, the mPFC is not a likely generator for 

the N400 (see Federmeier & Laszlo, 2009; Kutas & Federmeier, 2011; Lau et al., 2008). However, 

an alternative interpretation is that the two effects do reflect the same underlying activation, and 

that the previously observed ERP effect was not actually a modulation of the N400. Under this 

                                                
2 Of course, in the present paradigm subjects knew that the scenarios weren’t actually about them, and 
thus would not necessarily have a reason to update their beliefs in response to them. However, it is likely 
that aspects of the way in which positive and negative self-related information is processed asymmetrically 
is relatively automatic rather than fully conscious and strategic (Beer, 2014). 
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interpretation, what appeared to be a reduced negativity, was in fact an increased positivity 

overlapping closely with the timing of the N400. Testing this possibility would likely require fMRI 

and joint EEG/MEG recordings in the same set of subjects (e.g., Lau, Gramfort, Hamalainen, & 

Kuperberg, 2013). If confirmed, it would provide interesting information about the timing of self-

related mPFC activity and suggest that ERPs could be used in the future to study such activity. 

 In the Introduction, we suggested that the opposite pattern of results may also make 

sense: that is, increased activity in response to scenarios incongruent with the positive self-

concept could be expected to increase activity in the mPFC as participants attempt to integrate 

negative, self-relevant information with their positive self-concept. However, we did not observe 

mPFC activation to the self-other contrast for negative scenarios. Notably, this is broadly 

consistent with our ERP results, where we also saw no effect associated with the cost of 

processing unexpected or incongruent negative information about the self. This may simply be 

due to the nature of our scenarios and paradigm. Although second person leads to reading text 

as being about the self all else being equal (Brunyé et al., 2009; Brunyé, Ditman, Mahoney, & 

Taylor, 2011), participants could easily simply reject our scenarios as being about the self once it 

was clear they were incongruent with what they believed about themselves, and therefore not 

engage much self-related processing.  

On the other hand, the research discussed above (Garrett et al., 2014; Sharot et al., 2011) 

suggests that the mPFC is associated with belief updating in response to specifically positive, 

self-relevant information (see also Chavez & Heatherton, 2015, 2017), and that other regions 

(including ventrolateral PFC) are associated with the processing of negative self-relevant 

information. Thus, while the present results suggest that mPFC is modulated by the self-positivity 

bias, it will be important for future research to further examine the specific functional role of the 

mPFC and whether it is simply modulated by the self-positivity bias or plays a role in maintaining 

it. 
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Chapter 2: Toward an understanding of the late positive 

component of the ERP to emotional stimuli 

Part I: Empirical and Theoretical Review of the Late Positive Component (LPC) 

The last several decades have seen an increasing interest in the study of emotion. Why 

do we have emotional responses to certain stimuli? How do those responses affect the processing 

and encoding of stimuli? In cognitive neuroscience, the most prominent research in this area has 

been the use of fMRI to identify the neural networks involved in processing emotional stimuli. 

Initial work focused on identifying neural regions specialized for processing emotion (Phan, Wager, 

Taylor, & Liberzon, 2002), but more recent work has developed more sophisticated models of the 

interactions of cognition and emotion (Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012). 

Parallel to this work, over the last decade or so, there has been a dramatic increase in the study 

of the event-related potential (ERP) response to emotional stimuli (Hajcak, Weinberg, 

MacNamara, & Foti, 2012). 

 ERPs are a measure of the electrical activity of the brain as recorded from the scalp. 

Although not well suited to identifying where in the brain processing is occurring like fMRI, ERPs 

are a much more direct assessment of brain activity than fMRI, because they measure the change 

in electrical potentials cause by synaptic activity. This measure is essentially instantaneous and 

highly temporally precise. The ERP is the average of the electrophysiological response across 

many trials and consists of a series of identifiable components that represent various aspects of 

the cognitive response to the eliciting event. ERPs are therefore very useful for understanding the 

mechanisms of cognitive processing and how they unfold over time (Luck, 2014). 

 Not surprisingly, emotional properties of stimuli have been shown to affect many 

components of the ERP, starting with early components that reflect sensory and attentional 
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processes (Citron, 2012; Hajcak et al., 2012). However, many of these effects have been 

inconsistent. By far the most consistent ERP effect to emotional stimuli has been the modulation 

of a positive component that peaks rather late in the stimulus-locked response, usually after 500 

ms. As will be reviewed in detail below, this late positive component (LPC) is usually larger to 

emotional (positive and negative) stimuli than neutral stimuli, but is also modulated by many other 

factors, often in complex interactions. 

 A rather complex and often contradictory series of findings on this component has 

emerged. What is clear is that the LPC represents some kind of additional processing to stimuli 

that are socially and emotionally relevant. But many open questions remain. What exactly is the 

LPC sensitive to? And what is its functional role? In other words, what cognitive process within 

the brain is reflected by the scalp recorded LPC?  

These questions are important. Given the large number of studies that have now reported 

an effect on the LPC and the large number of circumstances in which it has been elicited, it would 

appear to be a fundamental part of the cognitive response to emotional stimuli. Understanding 

this component would therefore tell us not just about the LPC itself and its use as a dependent 

measure, it would also tell us something much more general about how the brain responds to 

emotional stimuli and, as will be argued, motivationally relevant stimuli more generally. As a result, 

the meaning of the LPC is relevant not just to ERP researchers or even cognitive neuroscientists, 

but to anyone interested in social psychology, emotion, and cognition. 

Here I present a detailed review of the LPC via examination of the ERP literature on 

emotional language. I then discuss proposals for the function of the LPC and suggest a new way 

forward for building a functional theory of this component by taking seriously its connections to 

the extensively studied P300 component. In Part II of this chapter, I describe an ERP study 

deriving from this framework. 
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Review of the LPC 

The LPC is modulated by many types of emotional stimuli and has been widely examined 

in response to both pictures and words.3 Although pictures are often seen as eliciting stronger 

emotional responses, they also present challenges. As the saying goes, “a picture is worth a 

thousand words”: pictures are more complex and more difficult to control for a variety of factors 

from physical differences and visual complexity to semantic and social content. In addition, by 

manipulating sentence and discourse context, language offers a natural, powerful, and easy 

means to examine the effects of the emotional properties of stimuli in context, which, as will be 

seen, is crucial to understanding the LPC. The present review therefore focuses on studies that 

have examined the late positive component in response to linguistic stimuli (words, phrases, 

sentences, and discourse). This review represents a qualitative, but relatively systematic, review 

of this literature,4 while also referring to and drawing insights from the picture literature where it is 

particularly relevant (for reviews, see Hajcak, MacNamara, & Olvet, 2010; Hajcak et al., 2012; 

Olofsson, Nordin, Sequeira, & Polich, 2008).  

Basic characteristics and descriptions 

Temporal and morphological characteristics 

 The emotional LPC is a positive-going deflection of the ERP elicited by words, pictures, 

and other stimuli. Effects on the LPC are nearly always largest at central and/or parietal electrodes, 

and this has held true for a variety of experimental designs as well as for mastoid, earlobe, nose, 

and average references. There is variability in the temporal characteristics of the component. In 

the word literature reviewed here, the LPC usually begins between 400 and 500 ms after the 

                                                
3 For studies directly comparing the LPC to words and to other types of stimuli see Frühholz, Jellinghaus, 
and Herrmann (2011); Hinojosa, Carretie, Valcarcel, Mendez-Bertolo, and Pozo (2009); B. L. Liu, Jin, Wang, 
and Hu (2010); Rellecke, Palazova, Sommer, and Schacht (2011); Tempel et al. (2013); and Vanderploeg, 
Brown, and Marsh (1987). 
4 Overall, 97 studies reporting an emotional LPC elicited by linguistic stimuli, reported in 80 separate papers, 
were examined for this review. Studies published or in press after mid-2014 are generally not included. 
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onset of an eliciting word (although effects have been reported beginning earlier) and lasts a few 

hundred milliseconds (but can last longer). A study in the picture literature has shown that the 

duration of the LPC is affected by stimulus duration (Gable, Adams, & Proudfit, 2015). This 

relationship may be less pronounced in the word literature, but in the studies examined for the 

present review there also appeared to be a positive relationship between SOA and LPC duration. 

Component terminology 

 Several different terms have been used to describe late positive responses to emotional 

stimuli: P3 (or P300 or P3b), late positive component (LPC) or late positive complex, late positive 

potential (LPP), slow wave or positive slow wave, or simply late positivity. LPC and LPP have 

been the most commonly used of these. Which term is used seems to primarily reflect the authors’ 

preference, interpretation, and/or theoretical assumptions: there is no clear relationship between 

the term used to describe a late positive component to emotional stimuli and any (physical or 

experimental) properties of the component itself. For consistency and clarity, I will use the term 

late positive component (LPC) regardless of the terminology used by the authors of the studies 

being discussed. However, I use this term descriptively and do not mean to imply any functional 

or theoretical interpretation by its use. Neither do I mean to imply that all findings were on exactly 

the same component or cognitive process, as this is an open question. 

How many late positivities are there? 

 A potentially important open question is whether there is a single emotion-sensitive late 

positivity or multiple later positive-going components that can be responsive to emotional 

manipulations. This is an inherently difficulty question to answer. It can be very difficult to 

distinguish components both within and across ERP studies for a variety of reasons. A given 

cognitive process represented by a particular component can have a different latency, appearance, 

and scalp distribution depending on differences in other cognitive processes and components. 

On the other hand, because of the diffuse nature of ERP scalp distributions, two distinct 
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neurocognitive processes can evoke similar potentials (for discussion of distinguishing and 

interpreting ERP components, see: Coulson, King, & Kutas, 1998; Donchin & Coles, 1988; 

Kappenman & Luck, 2012; Luck, 2014, Ch. 2). 

There is some evidence for the possibility of multiple emotion-sensitive late positivities. 

Some studies have reported emotion effects to more than one later positivity in the same 

waveform (Bernat, Bunce, & Shevrin, 2001; Dillon, Cooper, Grent-'t-Jong, Woldorff, & LaBar, 

2006; Herbert, Kissler, Junghofer, Peyk, & Rockstroh, 2006; Knost, Flor, Braun, & Birbaumer, 

1997; B. L. Liu et al., 2010; Naumann, Bartussek, Diedrich, & Laufer, 1992; Naumann, Maier, 

Diedrich, Becker, & Bartussek, 1997; Schapkin, Gusev, & Kuhl, 2000; Tempel et al., 2013; 

Vanderploeg et al., 1987), but in some of these cases visual inspection indicates that these 

responses could have been measured as a single component. It is also worth noting that the 

presence of more than one positivity to the same stimuli does not necessarily imply different 

processes/components: it is quite possible that the same cognitive process could be engaged or 

peak more than once in response to a stimulus (e.g., R. Johnson, Jr. & Donchin, 1985). Some 

work using principle components analysis (PCA) also suggests that the LPC might have two or 

more subcomponents (Delplanque, Silvert, Hot, Rigoulot, & Sequeira, 2006; Foti, Hajcak, & Dien, 

2009; Gable et al., 2015; González-Villar, Triñanes, Zurrón, & Carrillo-de-la-Peña, 2014; Hajcak 

et al., 2010; MacNamara, Foti, & Hajcak, 2009; Vanderploeg et al., 1987; Weinberg, Hilgard, 

Bartholow, & Hajcak, 2012). 

It should be noted that the current lack of clarity on distinct late positive responses does 

not make research on emotion-sensitive late positivities impossible or useless and it does not 

necessarily prevent generalizations. In fact, questions of component identity and distinction are 

common in the ERP literature (e.g, Coulson et al., 1998; Polich, 2012). In the case of the LPC, 

even when researchers have argued for multiple late positivities, they have generally interpreted 

these to be related and to reflect similar processes (Gable et al., 2015; Hajcak et al., 2012; 
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Weinberg et al., 2012). And, as discussed in Luck (2014, Ch. 4), often the best ERP designs do 

not rely on knowing the exact identity of a component to draw inferences. In any case, it will only 

be through further theory-driven research into the sensitivity and function of the LPC (see later in 

this chapter) that these questions can ultimately be resolved. 

Properties of stimuli affecting the LPC 

 Nearly all studies in the ERP literature have used a dimensional model of emotion to study 

emotional words (for a discussion of dimensional models in contrast with other models, see 

Scherer, 2000). In particular, researchers have primarily worked with the popular two-factor model 

of emotion that argues that emotion varies along two fundamental dimensions, valence and 

arousal, which account for a large portion of the variance in the psychology and neuroscience of 

emotion (e.g., Bradley & Lang, 2007; Osgood, Suci, & Tannenbaum, 1957; Russell, 1980).5 

Valence describes how positive/pleasant/good versus negative/unpleasant/bad a stimulus is,6 

while arousal describes how arousing/exciting versus calming a stimulus is. Valence and arousal 

are by far the most researched properties of words that affect the late positivity, although, as we 

will see, this has not necessarily brought clarity on the effects of these dimensions. 

Arousal 

 Studies that have compared emotionally valenced stimuli (pleasant and unpleasant) to 

neutral stimuli have almost always used neutral stimuli that were less arousing than the pleasant 

and unpleasant stimuli. The general pleasant/unpleasant > neutral effect on the LPC (discussed 

in detail in the next section) could therefore be interpreted as an arousal effect. In fact, some 

                                                
5 A few studies have examined words relating to particular emotions or categories of emotional experience 
(Carretie et al., 2008; Fogel, Midgley, Delaney-Busch, & Holcomb, 2012; Hinojosa, Carretie, Valcarcel, et 
al., 2009; Knost et al., 1997; Metzger, Orr, Lasko, McNally, & Pitman, 1997; Pauli, Amrhein, Muhlberger, 
Dengler, & Wiedemann, 2005; Ponz et al., 2014; Thomas, Johnstone, & Gonsalvez, 2007; Weinstein, 1995). 
But with a few exceptions (Briesemeister, Kuchinke, & Jacobs, 2014; Zhang & Guo, 2014), they have not 
controlled for valence and arousal and thus it is not possible to determine the effects of these particular 
emotions or categories independently. 
6 I will primarily use the terms pleasant and unpleasant rather than positive and negative in this review to 
avoid confusion with positive and negative ERP amplitude, but in my usage they are interchangeable. 
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researchers have suggested that the LPC is primarily modulated by arousal (e.g., Olofsson et al., 

2008). There is some evidence in line with this view. Across many experimental designs more 

highly arousing stimuli do elicit a larger LPC, a study in the picture literature has shown the LPC 

to covary with autonomic arousal (Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000), and a 

particularly well controlled word study showed that when many word properties were matched 

there was an effect of arousal but not valence on the LPC (although only with a task that didn’t 

draw attention to valence: Delaney-Busch, Wilkie, & Kuperberg, 2016; see also Hofmann, 

Kuchinke, Tamm, Võ, & Jacobs, 2009).  

However, studies in both the picture (e.g., Briggs & Martin, 2009; Ito, Larsen, Smith, & 

Cacioppo, 1998; Weinberg & Hajcak, 2010) and word (see Table 2.1) literature have shown 

differential LPCs to stimuli matched in arousal. In addition, the few studies in the word literature 

that have explicitly examined valence-independent effects of arousal have shown mixed results, 

with some showing a larger LPC to high arousal words (Bayer, Sommer, & Schacht, 2012; 

Delaney-Busch et al., 2016; Hofmann et al., 2009) and some failing to find significant effects of 

arousal (Bayer, Sommer, & Schacht, 2010; Citron, Weekes, & Ferstl, 2013; Recio, Conrad, 

Hansen, & Jacobs, 2014). Finally, context and task effects (discussed below) suggest that the 

LPC cannot be accounted for by properties of the eliciting stimulus alone.  

Taken together, the literature suggests that arousal alone cannot account for LPC 

amplitude, but all else being equal more arousing stimuli will generally elicit a larger LPC. 

Valence 

Generally speaking, both pleasant and unpleasant stimuli elicit a larger LPC than neutral 

stimuli, although many studies have found at least one or both of these to not differ from neutral. 

Only a few studies have found overall null effects of valence; in many cases, these can be shown 

to be task or context effects and in other cases such explanations seem likely or plausible (see 

discussion below). The comparison between pleasant and unpleasant has yielded variable results. 
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Some of these effects are hard to interpret because of a lack of controls for various stimulus 

properties, particularly ratings of arousal between pleasant and unpleasant words.7 However, as 

is clear in Table 2.1, every possible pattern (between pleasant and unpleasant words) has also 

been found in well-controlled stimuli with arousal-matched words. Thus, the LPC is clearly 

responsive to both pleasantly and unpleasantly valenced words, but also distinguishes between 

them in many cases. A number of ideas have been advanced to explain these valence effects. 8 

Researchers finding a larger LPC for unpleasant words have often discussed their effects 

in terms of a “negativity bias”, the idea that, all else being equal, negative information has stronger 

effects on attention and cognition than positive information, possibly for fundamental evolutionary 

reasons having to do with survival. Although well supported by the behavioral literature 

(Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001; Ito et al., 1998; Rozin & Royzman, 2001; 

Taylor, 1991), findings LPC to words have not strongly supported the idea of a negativity bias. As 

can be seen in Table 2.1, when stimuli are matched for arousal nearly equal numbers of studies 

                                                
7  A number of other lexical and semantic factors are often controlled: length, frequency, concreteness, 
imageability, orthographic neighborhood, etc. Of course, if these factors interact with emotional properties, 
simply holding them constant across conditions will not reveal the full story. Only a handful of studies have 
explicitly examined the interaction of emotional characteristics and other lexico-semantic properties of 
words. Emotion effects on the LPC have been found for all parts of speech for which they have been 
examined: adjectives, nouns, and verbs. Kissler, Herbert, Winkler, and Junghofer (2009) compared emotion 
effects for nouns and adjectives and did not find significant effects of the part of speech on the effects of 
emotion (see also Palazova, Mantwill, Sommer, & Schacht, 2011). A majority of ERP studies looking at 
emotional words have controlled for word frequency across conditions. To date studies examining both 
frequency and emotional variables have not found significant interactions between these variables 
(Delaney-Busch et al., 2016 [personal communication]; Palazova et al., 2011). Finally, a few studies have 
examined the interaction of concreteness and emotional properties and found varying results (Delaney-
Busch et al., 2016; Kaltwasser, Ries, Sommer, Knight, & Willems, 2013; Kotz & Paulmann, 2007). 
8 One possible explanation for a highly variable pattern of effects is that null hypothesis is true. In such a 
case, we would expect a null result 95% of the time and a significant effect (with random directionality) 5% 
of the time. Publication bias (the "file drawer problem”) could then inflate the number of significant effects 
such that the literature would evince a more equal pattern like that seen here. However, that is less likely 
to be a significant problem in this literature. This is because finding a null effect in the pleasant-unpleasant 
comparison should not make a paper difficult to publish as long as one or both differ from neutral, as is the 
case in most studies. So the distribution shown in Table 2.1 (which represents the least confounded studies) 
probably represents something close to the true distribution of effects that have been found. This distribution 
is more consistent with a situation in which not all relevant variables have been taken into account than a 
situation of a true null effect, as discussed later in this paper. 



www.manaraa.com

  30 

 

have found larger LPC to pleasant words as to unpleasant words. 9  In one framework, the 

negativity bias is complemented by a “positivity offset” (Ito et al., 1998). The idea is that the 

positive motivational system responds more strongly at low levels of arousal while the negative 

motivational system responds more strongly at higher levels of arousal. Some researchers have 

proposed that words simply are not as arousing as pictures (even when they receive the same 

arousal ratings in norming studies) making the positivity offset more relevant for word stimuli 

(Kissler, Assadollahi, & Herbert, 2006; B. L. Liu et al., 2010). However, there is evidence pointing 

against this idea: many studies have seen a larger LPC to unpleasant words than pleasant words 

and studies finding a larger LPC to pleasant words have not necessarily used less arousing stimuli. 

In addition, B. L. Liu et al. (2010) compared pictures and words to explicitly examine the lower 

arousal for words hypothesis and did not find support for it. 

One explanation for the variability in the effects of valence may be a difference between 

subjects’ perception of the stimuli and the ratings used to categorize them. Valence (as well as 

arousal and other emotional properties) is clearly a subjective property of words. Differences 

between the subjects completing stimulus norming studies and subjects in ERP studies or 

differences between the contexts in which these two groups of subjects encounter the stimuli may 

lead to different subjective experiences of emotional properties. There is some evidence to 

support this. Delaney-Busch et al. (2016) presented pleasant, unpleasant, and neutral words 

matched for arousal and a number of other word properties and found that unpleasant words 

elicited a larger LPC but pleasant and neutral did not differ. However, when stimuli were 

recategorized based on individual participants’ valence categorizations, both unpleasant and 

                                                
9 Interestingly, studies examining words in sentence or discourse context (discussed in following sections) 
seem particularly likely to show a larger LPC to unpleasant words (see Table 2.1). However, the total 
number of such studies is small, and a chi square test for independence show that this pattern cannot be 
distinguished from coincidence at α = .05. No study has yet provided the relevant comparison by directly 
examining the same set of words (in the same participants) in isolation and in context. 
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pleasant stimuli elicited a larger LPC than neutral stimuli without differing from each other. In 

addition, a signal detection analysis of behavioral data indicated that participants had a harder 

time distinguishing between pleasant and neutral words than they did distinguishing unpleasant 

words from other words (N. Delaney-Busch, personal communication). Thus inexact measures of 

actually experienced valence, arousal, etc. may account for any number of contradictory findings 

in the literature, and this is an important reminder of the challenges of studying a subjective 

phenomenon (for additional evidence on the importance of idiosyncratic emotional interpretation, 

see Van Berkum, Holleman, Nieuwland, Otten, & Murre, 2009). 

Another likely explanation for variability in emotion effects is that there are simply stimulus 

characteristics that differ between studies that have not been accounted for. For example, one 

property that may be important is ambiguity. Because we cannot know how to prioritize stimuli in 

the environment until we can place a value on them, it has been argued that ambiguous stimuli 

can be assessed as more motivationally significant than pleasant or unpleasant stimuli until they 

are disambiguated (Hirsh & Inzlicht, 2008; Sokolov, Spinks, Näätänen, & Lyytinen, 2002). This 

idea has received support in ERP studies examining the feedback-related negativity (FRN; Gu, 

Ge, Jiang, & Luo, 2010; Hirsh & Inzlicht, 2008) and the LPC (Tritt, Peterson, & Inzlicht, 2012). It 

is likely that neutral stimuli are often more ambiguous than pleasant or unpleasant stimuli, and 

this could account for a few studies that have seen a larger LPC to neutral stimuli than emotional 

stimuli (e.g., Citron et al., 2013; see also Fields & Kuperberg, 2012, 2016). 

To summarize, it is clear that there is nearly always an effect of emotional valence on the 

LPC and that this effect is driven by emotionally valenced stimuli eliciting a larger LPC than neutral 

stimuli. However, whether pleasant or unpleasant stimuli elicit the larger LPC and whether only 

one or both valences differ from neutral is highly variable. This is true even in studies that are 

controlled for the most relevant factors given our current knowledge. There are a number of 

possible reasons for this, but they all come back to the fact that there are many interacting factors 
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that affect the amplitude of the LPC. In addition to stimulus factors other than valence and arousal, 

these include effects of context and task, which are discussed in the following sections. 

Table 2.1: Studies comparing pleasant and unpleasant words matched in arousal 

Experiment Stimuli Task 
Neg-Pos 

Comparison 

Bailey & Chapman (2012) single words memory POS>NEG 

Bayer, Sommer, & Schact (2012) single words lexical decision, silent reading POS>NEG 

Carretie et al. (2008) single words lexical decision NEG=POS 

Delaney-Busch & Kuperberg (2013) discourse comprehension questions NEG>POS 

Delaney-Busch (2016), Exp. 1 single words semantic categorization NEG=POS 

Delaney-Busch (2016), Exp. 2 single words valence categorization NEG>POS 

Dillon et al. (2006) single words arousal rating NEG=POS 

Fields & Kuperberg (2016), Exp. 2 discourse comprehension questions NEG=POS 

Fischler & Bradley (2006), Exp. 1 single words valence categorization NEG=POS 

Fischler & Bradley (2006), Exp. 2 single words emotionality categorization NEG=POS 

Fischler & Bradley (2006), Exp. 3 single words silent reading NEG=POS 

Fischler & Bradley (2006), Exp. 4 single words semantic categorization NEG>POS 

Fischler & Bradley (2006), Exp. 6 noun phrases coherence judgment NEG=POS 

Fischler & Bradley (2006), Exp. 7 noun phrases semantic categorization NEG=POS 

Herbert et al. (2006) single words memory POS>NEG 

Herbert, Herbert, et al. (2011) noun phrases silent reading POS>NEG 

Herbert, Junghofer, & Kissler (2008) single words silent reading POS>NEG 

Herbert, Pauli, & Herbert (2011) noun phrases silent reading NEG>POS 

Hinojosa, Mendez-Bertolo, & Pozo (2010) single words lexical decision NEG=POS 

Hofmann et al. (2009) single words lexical decision NEG=POS 

Holt, Lynn, & Kuperberg (2009), Exp. 1 discourse valence categorization NEG>POS 

Holt, Lynn, & Kuperberg (2009), Exp. 2 discourse comprehension questions NEG>POS 

Kaltwasser et al. (2013) single words concreteness judgment NEG=POS 

Kanske & Kotz (2007), Exp. 1 single words lexical decision NEG=POS 

Kanske & Kotz (2007), Exp. 2 single words lexical decision NEG>POS 

Kissler et al. (2009) single words 
silent reading, count adjectives, 

count nouns POS>NEG 

Kuperberg et al. (2011) discourse valence categorization NEG>POS 

Schacht & Sommer (2009b), Exp. 2 
noun-verb 
phrases 

lexical decision, relatedness 
judgment, font judgment NEG=POS 

Shestyuk & Deldin (2010), Exp. 1 single words social judgment (other or self) POS>NEG 

Zhang & Guo (2014) single words semantic categorization NEG>POS 
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Task effects 

 There have been several studies that have compared effects of emotion on the LPC with 

the same stimuli under different tasks. A number of studies have shown that tasks that lead to 

shallower processing or draw less attention to emotional attributes elicit smaller or null effects, 

while tasks that make emotional properties of stimuli task-relevant lead to larger effects of emotion. 

In an early study, Naumann et al. (1997) presented unpleasant and neutral nouns and showed a 

larger LPC for unpleasant nouns when subjects made a valence judgment, but not in structural 

decision or concreteness decision conditions. Similarly, but with words in discourse context, Holt 

et al. (2009) found a smaller effect of emotion with a semantic task than a valence categorization 

task. Fischler and Bradley (2006) report a series of five studies using the same stimuli but different 

tasks. They found effects of emotion for valence categorization, emotion categorization, and 

semantic categorization, with the largest effects seen in the emotion-related tasks. Interestingly, 

they also showed an effect of emotion for silent reading (i.e., no additional task) but not during a 

lexical decision task, demonstrating that certain tasks may actually draw attention away from 

emotional and semantic aspects of stimuli (see also González-Villar et al.; Kissler et al., 2009; 

Sass et al., 2010; Scott, O'Donnell, Leuthold, & Sereno, 2009). However, it should be noted that 

several studies have shown emotion effects with lexical decision tasks (Carretie et al., 2008; 

Hofmann et al., 2009; Kanske & Kotz, 2007; Schacht & Sommer, 2009a; Williamson, Harpur, & 

Hare, 1991), including Schacht and Sommer (2009b) who showed an effect of emotion for a 

lexical decision task and a semantic relatedness task, but not for a structural (font judgment) task. 

 While the studies above found changes in the magnitude of effects with different tasks, 

other studies have shown changes in the pattern of effects as a function of task. The clearest 

demonstration of this comes from Delaney-Busch et al. (2016) who showed an effect of arousal 

(with no effect of valence) with a semantic categorization task but an effect of valence (with no 

effect of arousal) with a valence categorization task. Fields and Kuperberg (2016) have shown a 
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more complex effect of task on an interaction between self-relevance and emotion that will be 

discussed below. Taken together, these and other studies (e.g., Fischler & Bradley, 2006; Holt et 

al., 2009) show that specific task demands can lead to qualitatively different patterns of effects on 

the LPC. 

Context effects 

 One of the strengths of using language as stimuli is the ability to examine the effects of 

processing emotional stimuli in context in ways that are comparable to real-world social situations. 

Sentences and broader discourse can be used to describe any variety of real-world contexts and 

differences in these contexts can be manipulated in arbitrarily subtle and complex ways. In the 

following sections, I review studies examining such manipulations as well as effects of the broader 

experimental context. 

Local context (phrases, sentences, discourse) 

 Although most studies have examined single emotional words, a number of studies have 

now examined emotional words in the context of phrases, sentences, and discourse (i.e., more 

than one sentence). These function as a manipulation of the local context for the stimulus. Broadly 

speaking, the same effects seen in individual words are seen to words in context when the context 

is held constant. For example, in neutral, non-emotionally-constraining sentence/discourse 

contexts, Holt et al. (2009; see also Kuperberg et al., 2011) and Bayer et al. (2010) have each 

shown effects of emotion on the LPC that are indistinguishable from effects to single words (but 

see Footnote 9 on the possibility that context increases the likelihood of seeing a negativity bias). 

 What about manipulations of the context? In two-word noun phrases (e.g., “dead tyrant”, 

“dead puppy”) that were fully crossed for valence, Fischler and Bradley (2006) did not see emotion 

effects on the first word under task conditions that lead subjects to read the words as a phrase. 

When subjects evaluated each word individually, however, the first words elicited a standard 

emotion effect on the LPC. Fischler and Bradley argue that when word pairs are perceived as a 
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phrase, evaluative processes are withheld until the whole phrase is perceived. This may explain 

the results of Clegg et al. (2010), who did not find robust effects to emotional words in the first 

sentence of two-sentence vignettes: in this case there was still significant information about the 

scenario to come (see also Ding, Wang, & Yang, 2014). 

 Delaney-Busch and Kuperberg (2013) examined the effect of emotional context on the 

processing of emotional words. In their study, two-sentence vignettes were presented in which 

the first sentence contained a key pleasant or unpleasant word and the critical word in the second 

sentence either matched or opposed the first sentence in valence, e.g.: Lucy was a(n) awful/great 

engineer. Her creations were big failures/successes every time. Interestingly, they found a main 

effect of the valence of the critical word in the second sentence, but this did not interact with the 

valence of the first sentence. However, under some circumstances congruity effects between 

context and word valence can be observed. Bartholow, Fabiani, Gratton, and Bettencourt (2001) 

presented a paragraph context implying either a positive or negative trait for a fictional person. A 

final sentence ended with a critical word that was either congruent or incongruent in valence with 

the implied trait. In addition to a main effect of valence (negative>positive), the ERPs to the final 

word showed a larger LPC for the incongruent condition (see also Bartholow, Pearson, Gratton, 

& Fabiani, 2003; Van Duynslaeger, Sterken, Van Overwalle, & Verstraeten, 2008; Van Overwalle, 

Van den Eede, Baetens, & Vandekerckhove, 2009). Because the implied traits had semantics 

beyond their valence and because the valence of the context was clearly associated with a 

character in the situation model, Bartholow et al.’s contexts were likely more constraining 

(emotionally and otherwise) than Delaney-Busch & Kuperberg’s and this may explain their 

differing results (see Delaney-Busch & Kuperberg, 2013 for further discussion of this point). 

Global context 

 The LPC is also sensitive to more global aspects of context, such as the nature of the 

other stimuli and trials in an experiment. For example, the LPC is sensitive to a version of the 



www.manaraa.com

  36 

 

oddball effect. The oddball effect is classically studied with simple stimuli on the P300 component. 

When a stimulus stands out from the preceding stimuli (i.e., is an oddball), it elicits a larger P300 

(Polich, 2012). The emotion-sensitive LPC shows a similar effect. For example, Crites, Cacioppo, 

Gardner, and Bernston (1995) showed that unpleasant stimuli showed the largest LPC when 

embedded in a stream of pleasant stimuli but pleasant stimuli showed a larger LPC when 

unpleasant stimuli were the majority (see also Cacioppo, Crites, Berntson, & Coles, 1993; 

Cacioppo, Crites, Gardner, & Berntson, 1994).  

A particularly interesting example of stimulus context comes from Fogel et al. (2012). 

Using stimuli similar to Delaney-Busch et al. (2016), they showed an effect of emotion on the LPC. 

However, when highly charged taboo words were included in the stimulus set, the difference 

between the standard emotional words and neutral words was no longer significant; only the taboo 

words elicited a large LPC. Presumably stimuli that had once seemed engaging and motivationally 

significant became more like distractors when the taboo words were included (a type of anchoring 

effect), which shows the important influence of context on what will be marked as motivationally 

significant (see also the effects of self-relevance in the following section). 

Self-relevance 

 Another important context variable that is likely to modulate emotional processing is social 

relevance. In single word studies, a word like “murder” is presented in isolation. But who is being 

murdered and why? The answer to this question could have significant effects on the activation 

of emotion circuits.  

To test this idea, a few studies have examined effects of self-relevance on emotional word 

processing. In two studies Herbert and colleagues (Herbert, Herbert, Ethofer, et al., 2011; Herbert, 

Pauli, et al., 2011) have examined ERPs to pleasant, unpleasant, and neutral nouns preceded by 

“my” (self-relevant), “the” (control), or “he” (other relevant; only used in the Herbert, Herbert et al. 

study). They found effects of emotion on the LPC only for nouns preceded by “my” (although the 
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exact pattern of these effects differed across studies; see also, Li & Han, 2010; Schindler, 

Wegrzyn, Steppacher, & Kissler, 2014; Shestyuk & Deldin, 2010). 

Fields and Kuperberg (2016) have conducted a study examining the influence of self-

relevance on emotional word processing in larger discourse context. In this studies, we presented 

scenarios such as: Someone knocks on Sandra’s/your hotel room door. She/you see(s) that he 

has a gift/tray/gun in his hand. ERPs were recorded to the emotional word (underlined above) in 

the second sentence. Pleasant and unpleasant words showed a larger LPC than neutral words 

(and did not differ from each other) in the self-relevant condition; however, there was no effect of 

emotion on the LPC in the other-relevant condition. This, along with the Herbert and colleagues 

studies and others (Li & Han, 2010; Schindler et al., 2014; Shestyuk & Deldin, 2010), show that 

self-relevance can have effects similar to those seen for taboo words in Fogel et al. (2012) 

(reviewed in the preceding section): when self-relevant emotional words are included in the 

experimental context, non-self-relevant words may become more like distractors among more 

motivationally relevant stimuli and lose their ability to draw special attention and processing. Other 

people’s problems matter less when you have your own problems, so to speak. 

However, task has a significant effect on this interaction. In another study using the same 

stimuli (Fields & Kuperberg, 2012), we used a production task (produce a third sentence 

continuing the scenario). This study showed an interaction between emotionality and self-

relevance wherein the LPC for self-relevant neutral words was larger than non-self-relevant 

neutral words, but there was no effect of self-relevance for pleasant or unpleasant words. We 

argued that this effect might be due to attempts to assess the valence of the neutral words, many 

of which were more ambiguous than the pleasant or unpleasant words. This was likely to be 

particularly important with this particular task in the self-relevant condition because of participants’ 

desire to produce a continuation consistent with their self-concept (Swann, 2011), whereas there 

was no motivation to go beyond the easiest or most salient interpretation in the other-relevant 



www.manaraa.com

  38 

 

condition (see discussion in Fields & Kuperberg, 2012, 2016). Thus, these studies show a 

complex interaction of factors that have been discussed thus far: emotional properties of words, 

local context, global context, and task (see also Fields, 2015). 

Toward a Theory of the LPC 

 As will now be clear, the LPC is consistently modulated by the emotional properties of 

words, but the exact nature of these effects is variable. There are many discrepancies and 

conflicting findings, and these are not always easy to explain. How can we make sense of this 

literature? 

As a useful staring point, we might ask: Is the LPC an emotion-specific component or is it 

sensitive to something broader that is, in turn, affected by or correlated with emotion? Although it 

has sometimes been described as representing a process of emotional evaluation, researchers 

have more often taken the latter view. The literature reviewed above clearly shows that there is 

no one-to-one relationship between any given emotional property of a stimulus and LPC 

amplitude. Rather, it is clear that the cognitive processes reflected by the LPC are modulated by 

multiple interacting factors that are likely to play important roles in real-world social contexts. 

A common view of the LPC is therefore that it is increased to the extent that a stimulus is 

motivationally significant. Emotional stimuli are inherently motivationally significant due to their 

connection to enduring biological and social motivations. Indeed, emotions have been referred to 

as “relevance detectors” (Frijda, 1986) with the idea that a core function of emotions are to tell us 

which stimuli most likely to be relevant for our goals and motivations. However, the motivational 

significance of a stimulus will also depend on the context. The same word read in a self-relevant 

context will have a different motivational significance than in a non-self-relevant context. In the 

same vein, the word “puppy” will likely have different levels of motivational significance in the 

phrase “I saw a puppy” and “I adopted a puppy”. More broadly, the motivational significance of a 

given stimulus is relative and will depend on the other stimuli in a particular context: a spider 
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discovered in your living room may dominate your attention under normal circumstances, but if 

your house is on fire you may not notice it at all. An experimental analogue is Fogel et al.’s (2012) 

finding that there is no standard effect of emotion on the LPC in an experiment that included taboo 

words (see discussion above).  

Finally, the motivational significance of a stimulus will depend on the motivations of the 

participant, which will differ depending on the task they are engaged in (as well as individual 

differences). For example, a task that requires an emotional judgment will make the emotional 

properties of words more relevant and thus it is not surprising that such tasks tend to increase the 

effect of emotion on the LPC. In addition, which emotional properties modulate the LPC can 

depend on which properties are made relevant by the task (Delaney-Busch et al., 2016) and some 

tasks may also make properties of neutral words particularly relevant (Fields & Kuperberg, 2016). 

Importantly all these various factors can interact in complex ways to determine the 

motivational significance of a stimulus (e.g., Fields & Kuperberg, 2016). In addition, it is unlikely 

that we have uncovered or fully understand all the factors that are involved. It is therefore not 

surprising that the literature contains much variability and inconsistency. However, a purely 

empirical approach of examining every plausible factor and interaction that might affect the LPC 

may be a never-ending task. Instead, what are needed are better theories of the LPC, that can 

guide research and help us to understand why the various factors have the effect they do on the 

LPC. 

What is likely to be particularly helpful in making progress in understanding the LPC, and 

therefore understanding the processing of emotional stimuli more generally, is understanding the 

function of the LPC. To say that the LPC is modulated by motivational significance is simply to 

summarize and organize of all the various factors that affect its amplitude. But the question 

remains: what cognitive process is being modulated by motivational significance and all the 

factors that contribute to it? That is the question I turn to in the following section. 
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What is the function of the LPC?  

The corollary to the question raised above about whether the LPC is modulated 

specifically in response to emotional factors is the question of whether it represents emotion-

specific neural processes. Some researchers have in fact linked the LPC to (emotional and 

motivational) evaluative or appraisal processes (Citron et al., 2013; Herbert, Herbert, Ethofer, et 

al., 2011; Herbert et al., 2008; Herbert, Pauli, et al., 2011; Hinojosa, Carretie, Mendez-Bertolo, 

Miguez, & Pozo, 2009; Kotz & Paulmann, 2011) or the activation of motivational circuits (Hinojosa, 

Carretie, Valcarcel, et al., 2009; Hinojosa et al., 2010).  

However, researchers have more commonly regarded the LPC as reflecting more domain 

general cognitive processes that are modulated by the output of emotion evaluation circuits. In 

many cases, researchers have remained very broad and vague about the LPC’s function, 

describing it as simply reflecting sustained or elaborated processing, engagement with the 

stimulus, or processing load (e.g., Crites et al., 1995; Fields & Kuperberg, 2012; Herbert et al., 

2008; Herbert et al., 2006; Kaltwasser et al., 2013; Palazova et al., 2011; Schacht & Sommer, 

2009b; Shestyuk & Deldin, 2010). Somewhat more specifically, perhaps the most common view 

of the LPC is that it represents increased or sustained attention to emotional stimuli (Carretie et 

al., 2008; Fields & Kuperberg, 2012; Fischler & Bradley, 2006; Gable et al., 2015; Herbert, Herbert, 

Ethofer, et al., 2011; Herbert et al., 2008; Herbert, Pauli, et al., 2011; Hinojosa, Carretie, Mendez-

Bertolo, et al., 2009; Hinojosa, Carretie, Valcarcel, et al., 2009; Hinojosa et al., 2010; Holt et al., 

2009; Kissler et al., 2009). It has also been linked to increased sensory and/or perceptual 

processing (Bayer et al., 2010; Bradley & Lang, 2007), mental imagery (Kanske & Kotz, 2007), 

and stimulus encoding and/or memory encoding (Herbert, Herbert, Ethofer, et al., 2011; Herbert 

et al., 2008; Herbert, Pauli, et al., 2011; Hinojosa, Carretie, Mendez-Bertolo, et al., 2009; Kissler 

et al., 2009; Shestyuk & Deldin, 2010). 
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Obviously, this is a wide range of processes, encompassing much of cognition. In addition, 

rarely have researchers been very specific. As Donchin (Donchin, 1981; Donchin & Coles, 1988) 

argued years ago, a high-level psychological construct cannot really explain the function of an 

ERP component. For example, there is no specific neural process or mechanism that corresponds 

to a concept like “attention”. Instead, attention is a general psychological concept that refers to 

the purpose and outcomes of many different neural processes. ERP components are likely to 

reflect these more specific computational mechanisms (and, not surprisingly, there are many ERP 

components associated with attention: Luck, 2012; Luck & Kappenman, 2012). 

Unfortunately, the specific functional meaning of the LPC has not generated much 

discussion or empirical investigation in the literature. However, a common framework for 

understanding the LPC has been to regard it as being related to and functionally similar to the 

P300 component of the ERP (e.g., Bartholow et al., 2001; Cacioppo et al., 1993; Cacioppo et al., 

1994; Citron, 2012; Fields & Kuperberg, 2016; Hajcak et al., 2010; Hajcak et al., 2012; Kissler et 

al., 2009; Nieuwenhuis, Aston-Jones, & Cohen, 2005; Olofsson et al., 2008; Schacht & Sommer, 

2009a; Weinberg et al., 2012). And while this connection has often been made, its implications 

have scarcely been explored. In the following section, I argue that this relationship may point to a 

functional interpretation of the LPC. 

The LPC and the P300 

The P300 is perhaps the most studied component of the ERP.10 The terminology of ERP 

components provides a potential point of confusion here. Despite its name, the P300 does not 

necessarily peak at 300 ms. In fact, it only peaks around 300 ms for simple, easy to discriminate 

stimuli; in response to more complex experimental manipulations, such as manipulations of the 

semantic content of words, it often peaks within the LPC time window (e.g., Fabiani, Karis, & 

                                                
10 The term P300 can be used to refer to multiple components (or subcomponents). When unqualified, it 
generally refers to the P3b component (see Polich, 2012), and that is how I use the term here. 



www.manaraa.com

  42 

 

Donchin, 1986; Kutas, McCarthy, & Donchin, 1977). In addition, like the LPC, the P300 appears 

as broadly distributed, parietally centered positivity. Thus, the P300 and LPC are temporally and 

morphologically very similar. 

The P300 is commonly elicited by “oddball” paradigms where stimuli of two (or more) 

categories are presented with one category being rare and the other being common. In such a 

paradigm, the amplitude of the P300 increases as the probability of a stimulus category decreases. 

More generally, the amplitude of the P300 is inversely related to the expectancy (or surprise) of a 

stimulus, which is of course influenced by aspects of the context and sequence of stimuli, not 

simply global or objective probability (Donchin & Coles, 1988; R. Johnson, Jr., 1986; Squires, 

Wickens, Squires, & Donchin, 1976). The P300 is also larger to task-relevant stimuli than to stimuli 

that require no response or can be ignored. These two factors, stimulus probability (or 

expectancy) and task-relevance are the most well-known and studied determinants of P300 

amplitude, but it is known to be elicited in many circumstances and influenced by many factors, 

particularly factors associated with attention to and encoding of a stimulus. For example, one 

attempt to summarize the various factors affecting P300 amplitude is Johnson’s (1986) classic 

“Triarchic Model”, which proposed that the amplitude is determined by the following formula. 

 

Thus, both the P300 and LPC are highly dynamic components that are modulated by the 

particular goals imposed by a task, as well as several aspects of local and global context. The 

effect of emotion on the LPC has often been seen as analogous to the effect of task-relevance on 

the P300. Whereas the P300 is larger to “targets” (stimuli that require a response), emotional 

stimuli, have been argued to be “natural targets” due to their inherent motivational significance 

(Hajcak et al., 2010). That is, a target in a traditional P300 paradigm is made motivationally 

relevant by the task, but emotional stimuli are naturally motivationally relevant and do not need to 

P300 amplitude = ((1 – EQ x AT) x [(GP + SE) + (TC + SC +SV)]) 
 

Where: EQ is equivocation, AT is attention, GP is global probability, SE is sequence effects, TC is 
task complexity, SC is stimulus complexity, and SV is stimulus value. 
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be rare or task-relevant to draw the additional processing reflected by the LPC. This fits well with 

thinking on the P300: for example, in Johnson’s model task-relevance is related to the attention 

factor, and it is of course known that emotional stimuli draw attention (Compton, 2003). Other 

relationships are also possible. For example, emotional stimuli could also be related to the 

stimulus value factor. P300 studies supporting this aspect of the model have manipulated value 

via differing monetary reward for different stimuli (reviewed in R. Johnson, Jr., 1986); emotional 

stimuli are, presumably, naturally valuable. 

In addition to both components being highly sensitive to task and context, the P300 and 

LPC may relate to similar outcomes. A key attribute of the P300 is that stimuli that elicit larger 

P300 amplitude tend to be remembered better (Fabiani & Donchin, 1995; Fabiani et al., 1986; 

Fabiani, Karis, & Donchin, 1990; Kamp, Brumback, & Donchin, 2013; Karis, Fabiani, & Donchin, 

1984; A. D. Wagner, Koutstaal, & Schacter, 1999). Although memory effects have not been directly 

investigated with regard to the LPC, it is well known that emotional stimuli are remembered better 

than non-emotional stimuli (Hamann, 2001; Kamp, Potts, & Donchin, 2015; Laney, Campbell, 

Heuer, & Reisberg, 2004). 

Thus, the P300 and LPC appear as very similar components on the scalp (i.e., they are 

temporally and morphologically similar), are sensitive to many of the same or related experimental 

variables, and share a relationship to key cognitive processes such as attention and memory. This 

suggests that the relationship between the LPC and the P300 should be taken more seriously. It 

seems plausible that the emotional LPC and the P300 share a common underlying computational 

mechanism, or at least that functional theories of the P300 may be useful guides for building a 

functional theory of the LPC. 

Theories of P300 function 

The classic functional theory of the P300 is Donchin’s context updating model (Donchin, 

1981; Donchin & Coles, 1988), which proposes that the P300 is related to building accurate and 
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useful models of a given context. Clearly, at any given time we must have some model or schema 

of our current environment. This model allows us to predict what is likely to happen, which actions 

are strategic for pursuing our goals, et cetera. Since our environment constantly changes, usually 

in ways that are not fully predictable, we must make use of incoming sensory information to update 

our model. In Donchin’s own words, the context updating account proposes simply "that the P300 

is elicited by processes associated with the maintenance of our model of the context of the 

environment" (Donchin & Coles, 1988, p. 370). It is therefore larger to stimuli that require greater 

updating of the context model. Unexpected events elicit greater context updating because they 

provide more new information than expected events and act as signals that our environment may 

be different than we thought it was. Task relevance modulates this effect because our model of 

the environment is tailored to our goals and motivations. That is, we don’t attend to or encode all 

aspects of our environment equally; instead, we are trying to build a model of the context that 

helps to achieve our goals. The relationship of the other factors influencing P300 amplitude to 

context updating is often similarly intuitive. 

It is also intuitive that emotional stimuli might be associated with this sort of context 

updating process. First, emotions are often elicited by stimuli that are either better or worse than 

expected, and thus emotions may serve as a signal that our environment has changed or is 

different than we thought. Second, in a complex, noisy and ever-changing environments, 

emotions act as “relevance detectors” (Frijda, 1986), telling us which information is relevant to our 

goals and motivations and thus which information is most important to integrate into our context 

model. Thus, whereas the P300 is often said to be modulated by task relevance, perhaps it is 

more accurate to say that it is modulated by motivational relevance, which could subsume task 

relevance and expectancy as subcomponents. 

 Although it remains the most prominent account of the P300, Donchin and colleagues’ 

particular formulation of context updating was not further developed after the late 1980’s. However, 
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in recent years there has been renewed interest in theories of the P300, many of which build in 

some way upon the context updating account. In some cases, these theories have already taken 

responses to emotional stimuli into account or are easily adapted to emotional stimuli. 

Nevertheless, the emotional ERP literature has not taken much note of them. 

Nieuwenhuis et al. (2005) proposed a neurobiological theory of the P300 that fits nicely 

with the LPC literature. In fact, these authors do not clearly differentiate between the classic P300 

and late positivities to emotional stimuli (which had been investigated much less at the time). They 

propose that the P300 is generated as a result of widespread release of norepinephrine in 

response to motivationally relevant stimuli. Much like the discussion above, Nieuwenhuis et al. 

see surprise, task relevance, and emotion as each contributing to motivational relevance. The 

effect of NE on cortical structures is to increase signal to noise ratio in the service of better 

processing of significant stimuli. The resulting increase in synaptic activity, primarily in temporal 

and parietal regions, generates the P300. Polich (2007) builds on the work of Nieuwenhuis et al. 

to propose that the P300 represents specifically inhibitory processes. Based on a biased 

competition framework, Polich argues that unexpected and important stimuli lead to inhibition of 

other processes via the effects of NE release. In this framework, the P3b (i.e., the classic P300) 

in particular is the result of inhibition in the service of memory updating processes in the temporal 

and parietal lobes, which is broadly consistent with the context updating account.11 

Although Nieuwenhuis et al. (2005) initially contrasted their account to the context 

updating theory, in more recent work Nieuwenhuis (2011) has suggested this may have been a 

mistake. Instead, he has emphasized the similarities between these two accounts by examining 

the relationship of the NE system in learning and belief updating. He also links these theories to 

another literature that may be important to understanding both the P300 and LPC, the Bayesian 

                                                
11 This account is also compatible with Mather and Sutherland’s (2011) arousal biased competition theory, 
which asserts the emotionally arousing stimuli sharpen biased competition. It may be that such effects are 
mediated by the norepinephrine system. 
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literature on predictive cognition (particularly the work of Dayan & Yu, 2006). Like the context 

updating theory, Bayesian theories are fundamentally concerned with the way in which incoming 

stimuli are used to update internal models that improve predictions of future events (Clark, 2013; 

Courville, Daw, & Touretzky, 2006; Feldman & Friston, 2010; Kuperberg & Jaeger, 2016; Perfors, 

Tenenbaum, Griffiths, & Xu, 2011; Qian, Jaeger, & Aslin, 2012; Yu & Dayan, 2005). However, 

these theories propose testable and implemented models, which make possible much more 

specific predictions about the representational format of the context model and the mechanisms 

involved in the context updating process. While the connection between the P300 and Bayesian 

theories of cognition has been noted in the literature (De Swart, Kok, & Das-Smaal, 1981; Kopp, 

2008; Nieuwenhuis, 2011; Yu & Dayan, 2005), no detailed Bayesian theory of the P300 has been 

proposed and there have been no connections made between Bayesian theories and the LPC to 

my knowledge. Developing specific and implemented computational models that can account for 

the complex P300 and LPC literatures will be an important task for future work, and such models 

may lead to new theoretical insights and hypotheses.12 

Summary 

 What I have provisionally suggested is that the P300 and LPC may be the same or closely 

related components of the ERP. If this is true, it would give us a much stronger idea of the 

neurobiology of the LPC. Specifically, it would suggest that when a stimulus is identified as 

motivationally relevant, it leads to widespread norepinephrine release from the locus coeruleus 

and the LPC represents subset of the activity generated or enhanced by this release, likely in the 

parietal and temporal cortices (Nieuwenhuis et al., 2005; Polich, 2007). Identifying the LPC as a 

form of the P300 would also give us a much clearer idea of the cognitive process represented by 

the LPC. It would suggest that the LPC is related to processes of updating internal models in 

                                                
12 Spratling (2008) has shown the mathematical equivalence of Bayesian predictive coding accounts and 
biased competition theories, which may represent a way to integrate Bayesian approaches with Polich’s 
(2007) inhibition account of the P300. 
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order to improve our understanding of the situation and the processing of future stimuli (Donchin, 

1981; Donchin & Coles, 1988; Kopp, 2008; Nieuwenhuis, 2011; Yu & Dayan, 2005). Note that this 

contrasts somewhat with most common account of the LPC as being related to attention. Although 

LPC amplitude and attention would be closely related in this account, it suggests that the LPC is 

more directly reflects processes associated with memory and learning than simply attention per 

se. 

 It is important to note that all of these claims rely on many assumptions and are relatively 

speculative at this point. It is also important to note that the lack of a clear functional theory does 

not mean that past and current research examining the LPC is not useful (for example, research 

using the P300 was and is able to answer many research questions without reference to a 

functional theory; see discussion in Donchin, 1981; Polich, 2012). However, such an account 

would greatly inform theories of how emotion affects cognitive processing and expand the 

usefulness of the LPC as a dependent measure. 

Part II: An ERP study of stimulus probability and emotion 

A first step to building a stronger combined theory of the P300 and LPC is to more clearly 

establish the relationship (and/or differences) between these components. Although they have 

often been seen as similar in the literature, and sometimes even as the same component, there 

has not been much attempt to test this idea empirically. Here I describe an initial study intended 

to test this theory in two ways. 

First, to the extent that the LPC and P300 are the same component or share a closely 

related computational function, the LPC should be sensitive to the experimental factors that 

modulate the P300. In some cases, such as the effect of task-relevance, this has been confirmed 

in the literature (see above). But the most prominent factor affecting the P300, stimulus 

expectancy, has not been clearly examined in the LPC literature. By examining both emotion and 
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expectancy in the same experiment, with the same stimuli and subjects, the ERPs elicited by 

each factor could be directly compared. In addition, the nature of any interaction effect between 

these factors may provide insights into a unified theory of the P300 and LPC. 

Theory and research on the P300 suggests a second hypothesis: the LPC should be 

related to later memory for a stimulus. The context updating account argues that the P300 is 

associated with memory updating processes. Thus one of the first major predictions of this theory 

was that stimuli that evoked a larger P300 would be better remembered (Donchin, 1981). This 

prediction was subsequently confirmed in numerous studies (Fabiani & Donchin, 1995; Kamp et 

al., 2013; Karis et al., 1984; A. D. Wagner et al., 1999), and must be accounted for by any theory 

of the P300. Indeed, recent theoretical work on the P300 has continued to emphasize its functional 

role in learning and memory (Kopp, 2008; Nieuwenhuis, 2011; Polich, 2007; Yu & Dayan, 2005). 

But while emotional stimuli are known to be better remembered than neutral stimuli (Hamann, 

2001), the relationship between LPC amplitude and memory has not been tested directly 

(although at least one study has looked at the relationship between the P300 elicited by emotional 

isolates and memory: Kamp et al., 2015). Because it is possible to observe the relationship 

between the P300 and memory with an unexpected memory test after an oddball paradigm 

(Fabiani et al., 1986), hypotheses about memory can be tested within the emotional oddball 

paradigm intended to test the hypotheses described above. 

The present study 

The present study is based on classic oddball studies from the P300 literature (e.g., 

Duncan-Johnson & Donchin, 1977; Fabiani et al., 1986). Participants were presented with blocks 

of neutral and negative words with the proportion of each category varying across blocks. Their 

task was simply to categorize each word as negative or neutral. 

Surprisingly, this simple study design has not yet been used. A number of studies 

described as “emotional oddball” experiments have been performed, but they have not 
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manipulated probability in the relevant way. For example, Weinberg et al. (2012) presented 

sequences of five images, one of which was a different valence category (neutral, positive, or 

negative) than the other five. However, this stimulus was always the 4th or 5th item of the sequence. 

In other words, it was an “oddball” in the sense that it was different from the preceding stimuli, but 

not in the sense that it was low probability or unexpected. At the 4th item of the sequence there 

was a 50% chance of the oddball and when the oddball was the last item it could be predicted 

with 100% accuracy. Thus, on average, the oddball had a probability of 75% (see also, e.g., Crites 

et al., 1995; Delplanque et al., 2006; Kamp et al., 2015). Other studies have compared across 

emotion conditions within a rare category. For example, Delplanque et al. (2006) report an oddball 

study with a simple geometric surfaces as the standards and pictures that were either neutral, 

positive, or negative as the rare targets (see also, e.g., Delplanque, Lavoie, Hot, Silvert, & 

Sequeira, 2004; Mardaga & Hansenne, 2009). The goal of the present work is to manipulate the 

actual predictability and expectancy of each emotional category. 

To further compare the processing of emotional words to the P300, we also conducted an 

oddball study in which the gender of names was used as the relevant categories, but which was 

otherwise perfectly matched to the emotional words oddball. This is a design that has been used 

in several classic P300 studies (e.g., Fabiani et al., 1986; Kutas et al., 1977). 

Finally, after participants completed both oddball studies, they were given a surprise 

memory recall test (cf. Fabiani et al., 1986). This enabled us to test the relationship of ERPs at 

encoding to later memory. 

Methods 

Participants 

37 participants were recruited via a departmental paid studies system, flyers around 

campus, a lab call-back list, and word of mouth. All participants were right-handed, native English 

speakers with no history of neurological or psychiatric problems (including mood disorders). 
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Participants were consented in accordance with procedures approved by the Institutional Review 

Board of Tufts University and paid for their participation. We excluded from analysis any 

participant with more than 25% of trials rejected for EEG artifact in any condition; 7 participants 

met this criterion. An additional 5 participants were excluded due to experimenter error or 

technical problems during data collection and one participant was unable to finish the experiment 

due to sleepiness. The remaining 24 participants (12 female) were 18 to 32 years of age (M = 

21.5, SD = 3.1). 22 participants identified as non-Hispanic white and 2 identified as black or 

African-American. 

Stimuli 

Emotional stimuli 

Stimuli for the emotion blocks consisted of 300 negative words and 300 neutral words 

drawn from the Warriner, Kuperman, and Brysbaert (2013) database of emotional ratings for 

nearly 14,000 English lemmas. Stimuli were selected via the following process. To obtain 

candidate negative words, we selected all words from the Warriner et al. (2013) emotion norms 

with a valence rating of 3 or below (on a 9-point scale with 5 indicating completely neutral valence) 

and an arousal rating above the median in the database (4.11 on a 9-point scale). To obtain 

candidate neutral items, we selected all words with a valence rating between 4.5 and 5.5 and an 

arousal rating below the median. Some items in this database are phrases rather than single 

words, and these were discarded. Due to previous research suggesting taboo words may be 

treated specially and may interfere with other emotion effects on the LPC (Fogel et al., 2012), 

these words were eliminated as well. 

We obtained norms for a number of factors: word length (letters), number of morphemes, 

number of phonemes, number of syllables, part of speech, log word frequency and log contextual 

diversity (from SUBTLEXUS: Brysbaert & New, 2009), orthographic neighborhood, phonological 

neighborhood, mean bigram frequency, bigram frequency by position, lexical decision reaction 
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times, and naming reaction times were acquired from the English Lexicon Project 

(elexicon.wustl.edu; Balota et al., 2007). We also obtained concreteness ratings (Brysbaert, 

Warriner, & Kuperman, 2014), age of acquisition ratings (Kuperman, Stadthagen-Gonzalez, & 

Brysbaert, 2012), and semantic neighborhood size (Buchanan, Westbury, & Burgess, 2001; 

Durda & Buchanan, 2006) for each word. A measure of baseline familiarity was obtained by 

calculating the percentage of participants who reported knowing each word in two large rating 

studies (Brysbaert et al., 2014; Kuperman et al., 2012). To reduce ambiguity and better match the 

emotion blocks to the name blocks (see below), we selected only the words that were listed solely 

as nouns. After eliminating repeated base words (e.g., “terrorism” and “terrorist”) and emotionally 

ambiguous words (e.g., “abortion”), we used Match v2.3 (van Casteren & Davis, 2007) to select 

a set of words that were maximally distinct on emotional properties and best matched for all other 

properties. 

Stimulus norms and ratings for the resulting set of 300 negative and 300 neutral words 

are reported in Table 2.2. As can be seen, the emotion conditions did not differ on length, 

morphemes, phonemes, syllables, orthographic neighborhood, phonological neighborhood, mean 

bigram frequency, bigram frequency by position, log word frequency, log contextual diversity, age 

of acquisition, concreteness, semantic neighborhood, lexical decision RT, or naming RT [all |t|s < 

1.7, all ps > 0.10]. A Mann-Whitney U test showed that the conditions differed on baseline 

familiarity (percent of raters who knew the word) [U = 48,687.5, p = .034], but practically speaking 

this difference was very small (99.0% versus 99.9%) and all words had high baseline familiarity.  

Because null hypothesis tests cannot provide direct evidence in favor of the null 

hypothesis, we also calculated Bayes’ factor (BF) via the procedures described in Rouder, 

Speckman, Sun, Morey, and Iverson (2009) and as implemented in JASP (jasp-stats.org; JASP 

Team, 2017) with the default prior width of .707. Bayes factor is a ratio of the evidence in favor of 

the alternative versus the evidence in favor of the null, and can provide evidence for or against 
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either hypothesis (see discussion in Rouder et al., 2009). A BF of 1 indicates evidence is equal 

for the null and alternative hypothesis, a BF of less than 1 indicates evidence in favor of the null, 

and a BF of greater than 1 indicates evidence in favor of the alternative. As can be seen in Table 

2.2, all BFs were less than 1 for the matched properties.13  

  NEG NEU     

Property Mean (SD) Mean (SD) p BF10 

length (letters) 7.97 (2.3) 7.92 (2.1) 0.770 0.095 

morphemes 1.89 (0.8) 1.92 (0.8) 0.639 0.101 

phonemes 6.75 (2.1) 6.70 (2.0) 0.762 0.095 

syllables 2.7 (1.0) 2.68 (1.0) 0.777 0.095 

orthographic neighborhood 1.12 (2.4) 1.03 (2.4) 0.647 0.101 

phonological neighborhood 2.65 (5.9) 2.59 (6.1) 0.903 0.092 

mean bigram frequency 3885 (1458) 4008 (1466) 0.306 0.152 

bigram frequency by position 4041 (1954) 4318 (2197) 0.103 0.333 

log word frequency (SUBTLEXUS) 2.13 (0.5) 2.08 (0.6) 0.230 0.184 

log contextual diversity (SUBTLEXUS) 1.99 (0.5) 1.92 (0.5) 0.115 0.307 

% known 0.99 (0.02) 0.99 (0.03) 0.034 -- 

age of acquisition 10.09 (2.3) 10.28 (2.1) 0.285 0.159 

concreteness 3.18 (0.9) 3.29 (0.9) 0.149 0.252 

semantic neighborhood 2.89 (9.9) 4.81 (17.8) 0.110 0.325 

lexical decision RT 746 (99) 744 (99) 0.740 0.096 

lexical decision RT (normalized) -0.15 (0.3) -0.14 (0.3) 0.888 0.092 

naming RT 696 (80) 697 (77) 0.817 0.093 

naming RT (normalized) -0.15 (0.4) -0.15 (0.3) 0.897 0.092 

valence 2.49 (0.4) 5.10 (0.4) < .001 > 100,000 

arousal 5.30 (0.7) 3.61 (0.3) < .001 > 100,000 

dominance 3.60 (0.7) 5.33 (0.6) < .001 > 100,000 

Table 2.2: Stimulus norms and ratings for negative and neutral words. Concreteness rated on a 5-point 
scale (1 most abstract to 5 most concrete). Valence, arousal, and dominance rated on 9-point scales 
ranging from 1 most negative, least arousing, least dominate to 9 most positive, most arousing, most 
dominate. Values labelled "(normalized)" are normalized for each participant's mean and SD (see Balota 
et al., 2007). P-values are from t-tests (semantic neighbors: df = 577; morphemes: df = 597; all others: df 
= 598), except for % known, which is from a Mann-Whitney U test due to significant violations of the 
assumptions of the t-test. See manuscript text for sources of all norms and ratings and additional details. 

In addition to being well matched on the properties discussed above, the conditions were 

well-differentiated on the emotional properties of interest. Negative words had a mean valence 

                                                
13 Bayes factor was not calculated for % known because the t-test calculation that serves as the basis of 
this version of Bayes factor was not appropriate for this property. 
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near the bottom of the scale (at the 3rd percentile for all words in the Warriner et al. database) 

and neutral words had a mean valence very close to the mid-point of the scale (47th percentile). 

In addition, negative words were among the most arousing words in the Warriner et al. norms 

(88th percentile), while neutral words were among the less arousing words in these norms (27th 

percentile). 

Name stimuli 

To obtain an additional measure of the traditional P300 and to assist in interpreting any 

unexpected effects, we also ran a closely matched oddball study without the emotion factor. 

Following from several classic studies in the P300 literature (e.g., Fabiani et al., 1986; Kutas et 

al., 1977) male and female names served as the stimulus categories. The name blocks were 

identical to the emotion blocks but substituted 300 male names and 300 female names for the 

negative and neutral words. To create these stimuli, we started with the 600 most common male 

and female names in the 1990 United States Census.14 We obtained ratings of familiarity (from 0 

– “I don’t’ know this name” to 3 “I’m very familiar with this name”) and gender (1 – “Almost always 

male” to 5 – “Almost always female”) from participants (n = 18-33 for each name) recruited from 

Amazon Mechanical Turk (Buhrmester, Kwang, & Gosling, 2011; Paolacci & Chandler, 2014). We 

also calculated orthographic neighborhood size (Coltheart’s N) and bigram frequency from the 

SUBTLEXUS corpus of words (Brysbaert & New, 2009). We obtained two measures of frequency: 

the percentage of people with each name in the 1990 US Census (see footnote 2) and corpus 

frequency from all American books published after 2000 in the Google Ngrams corpus 

(https://books.google.com/ngrams; Brysbaert, Keuleers, & New, 2011; Michel et al., 2011) We 

then used Match (van Casteren & Davis, 2007) to choose a set of 300 male and 300 female 

names. 

                                                
14 1990 is the most recent census from which the U.S. Census Bureau makes this data available. See 
www.census.gov. 
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As can be seen in Table 2.3, gender ratings showed that the male and female names were 

well-differentiated and unambiguous in terms of their perceived gender. The male and female 

names were matched for length, orthographic neighborhood, bigram frequency, census frequency, 

familiarity, and gender typicality (distance from the midpoint of the gender ratings). They were 

similar, but not perfectly matched, for Google Ngram frequency. This may be due to differences 

in baseline frequency of male and female names in the books that the Google corpus draws from.  

  Male Female     

Property Mean (SD) Mean (SD) p BF10 

length (letters) 5.71 (1.32) 5.85 (1.43) 0.192 0.209 

orthographic neighbors 3.33 (5.35) 3.03 (5.47) 0.502 0.113 

mean bigram frequency 2594 (986) 2626 (1008) 0.695 0.098 

US Census frequency (1990) 0.15% (0.18%) 0.15% (0.18%) 0.782 0.094 

log Google Ngrams Frequency 5.79 (0.48) 5.47 (0.51) < .001 >10,000 

% known 98.9% (2.0%) 98.6 % (2.1%) 0.102 0.336 

familiarity 1.42 (0.14) 1.43 (0.15) 0.501 0.114 

gender typicality 1.69 (0.19) 1.72 (0.18) 0.134 0.273 

gender 1.31 (0.19) 4.72 (0.18) < .001 >10,000 

Table 2.3: Stimulus norms and ratings for male and female names. Familiarity on scale from 0 ("I don't 
know this name") to 2 ("I'm very familiar with this name"). Gender on scale from 1 ("Almost always male") 
to 5 ("Almost always female") with 3 ("Equally male/female" as the midpoint). P-values are from t-tests with 
df = 598. See manuscript text for sources of all norms and ratings and additional details. 

Procedure 

Stimulus presentation 

The emotion experiment consisted of three blocks differing in the proportion of neutral and 

negative words. One block consisted 40 negative words and 160 neutral (20%/80%); another 100 

negative and 100 neutral (50%/50%); and the last 160 negative words and 40 neutral (80%/20%). 

Within each block, the order of the items was randomly determined for each subject individually. 

No word was repeated across blocks and which block a particular word appeared in was 

counterbalanced across subjects. The control experiment consisted of three blocks identical to 

the emotion blocks but with male and female names substituting for negative and neutral words. 



www.manaraa.com

  55 

 

The order of the experiments and the order of the proportion blocks within each experiment were 

counterbalanced across participants. 

 Stimuli were presented using PsychoPy v1.83.04 (Peirce, 2007, 2009). Each trial began 

with “+” (1000 ms, ISI: 400-600ms). The word was then presented for 1300 ms with an ISI varying 

randomly between 600 and 800 ms. Jittered ISIs were used to smooth effects of overlap and 

eliminate synchronized oscillations. Participants were asked to blink on the fixation cross and not 

during word presentation. Every 40 trials participants saw a screen indicating they could take a 

brief, self-paced break. Between blocks there was a longer break where the experimenter 

engaged with the participant. 

Task 

 The participants’ task was simply to press a key on a standard computer keyboard with 

one hand if the word was negative and a different key with the other hand if it was neutral. For the 

name blocks, the participants pressed keys to indicate whether the name was male or female. 

The hand-category mapping for each experiment was counterbalanced across participants. 

Participants were not told to emphasize speed, but were told to respond while the word was on 

the screen (i.e., within 1300 ms). Only responses occurring between 100 and 1840 ms after word 

onset were recorded (this was to prevent overlapping EEG triggers for stimuli and responses, 

which can cause the BioSemi system to pause recording). 

ERP acquisition and processing 

 Data was collected using a BioSemi ActiveTwo EEG system and ActiView v7.05 EEG 

acquisition software (http://www.biosemi.com/). The EEG was recorded from 32 Ag/AgCl 

electrodes in an elastic cap placed according to the international 10-20 system. In addition, 

electrodes below the left eye and beside the right eye were recorded to monitor for blinks and eye 

movements, and electrodes on each mastoid were recorded to serve as the reference. The EEG 
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signal was amplified, digitally filtered online with a low pass 5th order sinc response filter with a 

half-amplitude cutoff at 102.4 Hz, and continuously sampled at 512Hz. 

Memory test 

 After the ERP portion of the experiment and before leaving the lab, participants completed 

a recognition memory test that included all items in the 80% probability condition for each emotion 

and name condition (160 words each; 640 in total) along with 80 words in each emotion and name 

condition that had not been previously presented. Thus, there were 960 total words/names tested 

and these were presented in a random order. For each word, participants indicated whether they 

thought it was “old” (it had been presented in the ERP session) or “new” (it had not been presented 

in the ERP session) as well indicating their confidence in their judgment as “guessing”, “somewhat 

sure”, or “sure”. 

Data processing and analysis 

EEG and ERP data processing was conducted in EEGLAB v13.5.4  

(sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004) and ERPLAB v5.0.0.0 (erpinfo.org/erplab; 

Lopez-Calderon & Luck, 2014) running in MATLAB 2015a. 

The EEG was first referenced to the average of the two mastoid electrodes. For each 

segment of continuous EEG, we removed the DC offset by subtracting the average voltage of the 

entire segment, then applied a high-pass 2nd-order Butterworth infinite impulse response filter with 

a half-amplitude cut-off of 0.1 Hz (Kappenman & Luck, 2010; Tanner, Morgan-Short, & Luck, 2015). 

Prior to averaging, blinks, eye movements, and other artifacts were detected via artifact detection 

algorithms implemented in ERPLAB. The particular algorithms used and their parameters were 

tailored to each subject via visual inspection of the data, but were consistent across all conditions 

within each subject. Averages were then calculated from trials free of artifact for epochs 200 ms 

prior to stimulus onset to 1100 ms after stimulus onset for each condition of the experiment. The 
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200 ms period prior to stimulus onset served as the baseline for all data visualization and 

amplitude measurements. 

ERP analysis 

The factors in the averaged ERP analysis were the manipulated factors: Emotion (neutral, 

negative) and Probability (20%, 50%, 80%) for the emotional words study; Gender (male, female) 

and Probability (20%, 50%, 80%) for the names study. For analyses examining the effects of 

memory the factors were Emotion (neutral, negative) and Memory Status (remembered, 

forgotten) and Gender (male, female) and Memory Status (remembered, forgotten), respectively.  

Data were analyzed at all time points from 300 to 1000 ms at all electrodes via the factorial 

ANOVA cluster mass test described in Chapter 3. The threshold for cluster inclusion was p ≤ .05 

and electrodes within approximately 7.5 cm of each other (assuming a head circumference of 56 

cm) were considered neighbors. 100,000 permutations were performed for each test. Statistical 

analysis was conducted on data that was first low-pass filtered at 30 Hz (half amplitude cut-off, 

2nd-order Butterworth IIR filter) and downsampled to 128 Hz (see Groppe, Urbach, & Kutas, 

2011a; Luck, 2014, Ch. 13). 

Results 

Behavioral results 

Names study 

 Behavioral results for the names study are shown in Figure 2.1. 

 Reaction times were slower to the 20% and 50% conditions than the 80% condition 

[Tukey’s test: t(23)s > 6.4, ps < .001], but the 20% and 50% conditions did not differ [Tukey’s test: 

t(23) = 0.01, p > .999]. Participants were also slower to identify female names than male names 

[F(1, 23) = 4.32, p = .049]. There was no interaction of Probability and Gender [F(2, 46) = 0.12, p 

= .814]. 
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 Categorization was less accurate for the 20% condition than the 50% or 80% conditions 

[Tukey’s test: t(23)s > 2.8, ps < .02], which did not differ [Tukey’s test: t(23) = 1.26, p = .424]. 

There was no effect of Gender on accuracy [F(1, 23) = 0.17, p = .683] and Gender did not interact 

with Probability [F(2, 46) = 0.05, p = .874]. A signal detection analysis showed that participants 

ability to discriminate between the categories did not differ between blocks [F(1, 23) = 0.63, p 

= .528], but the criterion did shift [F(2, 46) = 36.96, p < .001]: participants were biased toward 

whichever category was more common in a given block [one sample t(23)s > 4.3, ps < .001] with 

no bias for the 50/50 blocks [one sample t(23) = 0.93, p = .362]. 

 

Figure 2.1: Behavioral results for name-gender oddball study. The top row shows reaction time (in ms) and 
accuracy for the gender categorization task. The bottom row shows signal detection measures for the same 
task. For the criterion measure, positive values indicate a tendency to respond “female” and negative values 
indicate a tendency to respond “male”. 

Emotion study 

 Behavioral results for the emotional words study are shown in Figure 2.2. 

 Reaction times were faster for negative words than neutral words [F(1, 23) = 7.95, p 

= .010]. Reaction times were slower for the 20% condition versus the 50% and 80% conditions 



www.manaraa.com

  59 

 

[Tukey’s test: t(23)s > 2.9, ps < .02], which did not differ from each other [Tukey’s test: t(23) = 

1.89, p = .154]. There was no interaction of Emotion and Probability for reaction times [F(2, 46) = 

1.09, p = 0.322]. 

 Categorization was more accurate for higher probability words [Tukey’s test: all t(23)s > 

2.9, ps < .02]. There was no main effect of Emotion or Probability x Emotion interaction on 

accuracy [Fs < 1.37, ps > 0.25]. A signal detection analysis revealed that participants’ ability to 

discriminate neutral and negative words did not differ between the three blocks [F(2, 46) = 0.42, 

p = 0.643]. However, bias did differ between blocks [F(2, 46) = 44.59, p < .001] with participants 

being more likely to respond with the more common category in the 80/20 blocks [one sample 

t(23)s > 4.2, ps < .001] and more likely to respond with neutral in the 50/50 block (although this 

bias did not reach significance in a one-sample t-test [one sample t(23) = 1.59, p = 0.127]). 

 

Figure 2.2: Behavioral results for emotional words oddball study. The top row shows reaction time (in ms) 
and accuracy for the valence categorization task. The bottom row shows signal detection measures for the 
same task. For the criterion measure, positive values indicate a tendency to respond “neutral” and negative 
values indicate a tendency to respond “negative”. 
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  Percent Correct: ERP stimuli   ERP Stimuli by Confidence Rating   

  ALL guessing 
somewhat 

sure sure  ALL guessing 
somewhat 

sure sure   

NEG 87% 52% 74% 98%  160 15.3 44.4 100.4   

NEU 76% 40% 59% 95%  160 21.7 52.8 85.5   

Male 69% 47% 51% 91%  160 28.3 57.0 74.8   

Female 65% 43% 53% 86%  160 29.6 57.5 72.9   

             

  Percent Correct: Foils  Foils Confidence Rating   

  ALL guessing 
somewhat 

sure sure  ALL guessing 
somewhat 

sure sure   

NEG 52% 56% 57% 45%  80 16.7 38.4 24.9   

NEU 66% 61% 71% 64%  80 19.1 40.0 20.9   

Male 67% 55% 71% 64%  80 19.9 37.0 23.1   

Female 63% 49% 66% 61%  80 17.5 38.1 24.4   

             

  Signal Detection: d'  Signal Detection: criterion (bias)   

  ALL guessing 
somewhat 

sure sure  ALL guessing 
somewhat 

sure sure   

NEG 1.33 0.21 0.91 2.08  -0.62 0.01 -0.32 -1.17   

NEU 1.26 0.06 0.89 2.33  -0.17 0.18 0.17 -0.74   

Male 1.02 0.32 0.61 2.05  -0.03 0.11 0.26 -0.54   

Female 0.78 -0.07 0.53 1.67  -0.02 0.10 0.21 -0.47   

                      

 

Table 2.4: Memory test results. Accuracy reflects the percentage of items correctly identified as “old” for 
the ERP stimuli and correctly identified as “new” for the foils. For the signal detection criterion measures, 
negative values represent a bias toward to responding “old” and positive numbers reflect a bias toward 
responding “new”. 
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ERP results 

Names study 

Gender x Probability interaction 

 There was no apparent gender x probability interaction effect and no cluster reached 

significance in the statistical analyses (all clusters p > .13). 

Gender main effect 

Two small effects of Gender were apparent. First, a positivity largest at left posterior sites 

was larger to female names beginning before 400 ms, peaking at around 500 ms, and extending 

throughout the epoch. Second, a right-frontal positivity was larger to female names from 

approximately 800 ms to the end of the epoch. Both effects were significant in the cluster mass 

analysis (see Figure 2.4). Because gender per se was not of interest in the present work and 

these effects did not interact with Probability, they will not be discussed further. 

 

Figure 2.3: Main effect of Gender. Waveforms on the left show ERPs for each condition. Waveforms on 
the right show the male – female difference wave. All waveforms are low pass filtered at 15 Hz for viewing 
purposes. Scalp maps show the male – female voltage averaged across 100 ms time windows. 
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Figure 2.4: Cluster mass statistical analysis for the main effect of Gender. Time point-electrode 
combinations included in a significant cluster (p < .05) are highlighted in dark green. 

Probability main effect 

 Main effects of probability are shown in Figure 2.5. As expected, a posterior positivity that 

can be identified as the P300 was larger to the 20% condition than the 50% condition and larger 

to the 50% condition than the 80% condition. This centroparietal effect (peaking at Pz) began 

around 500 ms, peaked just after 600 ms, and extended to around 900 ms. After and partially 

overlapping with this posterior effect (700 ms to the end of the epoch) was a frontally distributed 

effect (largest at Fz) showing the opposite pattern (i.e., the 80% condition was more positive than 

the 50% and the 50% was more positive than the 20%). Both effects were included in significant 

clusters in the cluster mass analysis (see Figure 2.6). 
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Figure 2.5: Main effect of Probability for name-gender oddball study. Waveforms on the left show ERPs for 
each condition. Waveforms on the right show difference waves for each pairwise comparison. All 
waveforms are low pass filtered at 15 Hz for viewing purposes. Scalp maps show the voltage difference for 
each comparison averaged across 100 ms time windows. 
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Figure 2.6: Cluster mass statistical analysis for the main effect of Probability for the name-gender oddball 
study. Time point-electrode combinations included in a significant cluster (p < .05) are highlighted in dark 
green. 

Memory effects 

 To examine the relationship between online processing and later memory, we compared 

trials for which participants indicated that they were “sure” they had seen previously with those 

that they (incorrectly) indicated that had not seen previously and/or those on which they indicated 

they were guessing (either of which suggested no memory) within each condition. 

 There was no interaction of Memory Status and Gender at any time point or electrode (all 

clusters p > .76). Main effects of Memory Status are shown in Figure 2.7. Names that were 

remembered elicited a larger frontal positivity than names that were forgotten beginning around 

500 ms and extending to the end of the epoch. Remembered names also elicited a larger posterior 
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positivity centered around Pz that extended from around 600 ms to the end of the epoch. Both of 

these effects were included in significant clusters in the cluster mass analysis (see Figure 2.8). 

The waveforms also suggested an increased negativity to remembered words between 200 and 

600 ms at left temporal and parietal sites, but this effect was not significant in the cluster mass 

analysis (p = .273). 

 

 

 

Figure 2.7: Main effect of Memory Status for name-gender oddball study. Waveforms on the left show 
ERPs for each condition. Waveforms on the right show remembered – forgotten difference waves. All 
waveforms are low pass filtered at 15 Hz for viewing purposes. Scalp maps show the remembered – 
forgotten voltage difference averaged across 100 ms time windows. 
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Figure 2.8: Cluster mass statistical analysis for the main effect of Memory Status for the name-gender 
oddball study. Time point-electrode combinations included in a significant cluster (p < .05) are highlighted 
in dark green. 

Emotion study 

Emotion x Probability interaction 

There was no apparent emotion x probability interaction effect and no cluster reached 

significance in the statistical analyses. This lack of interaction seems unlikely to be attributable to 

insufficient power: p > .63 for all clusters and only a few isolated data points reached significance 

with no multiple comparisons correction at all. For example, the average F-value at CPz from 500 

to 800 ms (a spatiotemporal ROI where the main effect of both probability and emotion were 

large—see below) was 1.90 which corresponds to an uncorrected parametric p-value of 0.8. 
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Emotion main effect 

 Main effects of emotion are shown in Figure 2.9. As expected, negative words elicited a 

larger posterior positivity that can be identified as the LPC. This effect began by 300 ms, peaked 

just before 600 ms, and continued until the end of the epoch. The effect was centroparietal 

(centered around CPz) at its peak, but more frontal at the beginning and end. This may be in part 

due overlap with an earlier effect, peaking at around 400 ms, at the most frontal electrodes. This 

effect coincided with a negative deflection in the waveform, but it’s not clear whether it should be 

regarded as a reduced negativity or increased positivity for negative words. Both effects were 

included in significant clusters in the cluster mass analysis (see Figure 2.10). 

 

 

Figure 2.9: Main effect of Emotion. Waveforms on the left show ERPs for each condition. Waveforms on 
the right show the negative - neutral difference wave. All waveforms are low pass filtered at 15 Hz for 
viewing purposes. Scalp maps show the negative - neutral voltage averaged across 100 ms time windows. 
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Figure 2.10: Cluster mass statistical analysis for the main effect of Emotion. Time point-electrode 
combinations included in a significant cluster (p < .05) are highlighted in dark green. 

Probability main effect 

 Main effects of Probability are shown in Figure 2.11. As expected, there was an effect of 

the Probability manipulation on a centroparietal positivity. However, this effect was driven primarily 

by the 20% condition, which was larger than the 50% and 80% conditions while the 50% and 80% 

conditions showed a smaller difference. This pattern was confirmed by the cluster mass statistical 

analysis, where there were no clusters that reached significance for the 50% vs. 80% contrast. 

The positivity to words in the 20% condition began to diverge around 500 ms, peaked between 

700 and 800 ms and extended to the end of the epoch. Similar to the emotion main effect, there 
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was also an earlier effect of probability at frontal sites from around 400 to 800 ms and peaking at 

around 600 ms. 

 

 

 

Figure 2.11: Main effect of Probability for emotional words oddball study. Waveforms on the left show ERPs 
for each condition. Waveforms on the right show difference waves for each pairwise comparison. All 
waveforms are low pass filtered at 15 Hz for viewing purposes. Scalp maps show the voltage difference for 
each comparison averaged across 100 ms time windows. 
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Figure 2.12: Cluster mass statistical analysis for the main effect of Probability for the emotional words 
oddball study. Time point-electrode combinations included in a significant cluster (p < .05) are highlighted 
in dark green. 

Memory effects 

To examine the relationship between online processing and later memory, we compared 

trials for which participants indicated that they were “sure” they had seen previously with those 

that they (incorrectly) indicated that had not seen previously and/or those on which they indicated 

they were guessing (either of which suggested no memory) within each condition. 

 There were no interaction effects between Emotion and Memory Status (all clusters p 

> .66). Main effects of Memory Status are shown in Figure 2.13. Words that were remembered 

elicited a larger right-frontal positivity (largest at AF4) beginning by 500 ms and extending to the 

end of the epoch. Starting around 600 ms, there was also a somewhat left-lateralized posterior 
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positivity. The cluster mass analysis showed significant clusters including both the frontal and 

posterior portions of the effect (see Figure 2.14). Similar to the Names study, there was also a left 

posterior negativity to remembered words peaking around 400 ms, but this effect was not 

significant in the statistical analysis (p = .157).15 

 

 

 

Figure 2.13: Main effect of Memory Status for emotional words oddball study. Waveforms on the left show 
ERPs for each condition. Waveforms on the right show remembered – forgotten difference waves. All 
waveforms are low pass filtered at 15 Hz for viewing purposes. Scalp maps show the remembered – 
forgotten voltage difference averaged across 100 ms time windows. 

                                                
15 The fact that this effect was observed independently in both studies suggests that its lack of significance 
could be due to insufficient power. However, because this effect was not predicted and is not directly 
relevant to the current research questions, it will not be discussed further. 
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Figure 2.14: Cluster mass statistical analysis for the main effect of Memory Status for the emotional words 
oddball study. Time point-electrode combinations included in a significant cluster (p < .05) are highlighted 
in dark green. 

Summary 

Importantly, our results replicated the key findings of previous studies examining 

probability and memory effects using a name-gender oddball design (Fabiani et al., 1986; Kutas 

et al., 1977): a probability effect on the P300 component and a posterior positivity that was larger 

to remembered names than forgotten names. In addition, we observed a later frontal effect of 

probability with a pattern opposite of the P300 as well as a long-lasting frontal positivity to 

remembered names. 

In the emotional words study, we showed the expected LPC effect to negative words 

versus neutral words. There was also an effect of probability on a posterior positivity as expected, 
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but this effect was later than that observed in the names study and restricted to the 20% condition 

(at least in terms of statistical significance). Comparing the effects of Emotion and Probability 

within the emotional words study, the effect of probability began and peaked somewhat later. 

However, both effects showed a similar centroparietal distribution, and both Probability and 

Emotion also elicited an earlier frontal positivity. 

Both studies showed frontal and posterior positivities to remembered words versus 

forgotten words. For the names, the posterior portion was larger than the frontal positivity from 

around 600-900 ms, whereas for the emotional words study, the frontal positivity began earlier 

and was larger than the posterior effect until the end of the epoch. 

Discussion 

 Although a number of potentially interesting effects emerged in the present study, for 

present purposes the discussion will focus on results relevant to the main questions motivating 

this work: 1) what is the relationship between the P300 and LPC? and 2) what is the functional 

role of the LPC? 

What is the relationship between the P300 and LPC? 

 Both emotion and probability elicited similar effects, but there were also differences. In 

terms of timing, the probability effect began and peaked later than the emotion effect. However, 

this may be understood based on what we know of the P300. In categorical oddball studies the 

latency of the P300 varies with the time it takes to perform the relevant categorization (Kutas et 

al., 1977; Magliero, Bashore, Coles, & Donchin, 1984). In other words, the fact that a stimulus is 

from a rarer category cannot affect cognitive processes until the perceiver is able to determine its 

category membership. If emotional factors such as valence and arousal modulate the same 

process independently (i.e., not simply via category membership), they would not need to wait 

until categorization. So it is possible that early perception of the emotional features of the words 

began to modulate the process represented by the P300/LPC starting around 300 ms and 
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category membership later independently modulated the same process once participants had 

finished the more involved cognitive task of interpreting these emotional features in terms of 

binary categories. 

 Both the effect of emotion and the effect of probability were centered around centro-

parietal electrodes and had very similar overall scalp distributions. Given the diffuse nature of 

ERP scalp distributions and their ambiguous relationship to underlying neural generators, this 

provides only weak evidence that the effects represent the same process or underlying neural 

sources. However, the argument is somewhat bolstered by the changes in scalp distribution over 

time: both effects first emerged at frontal sites before peaking at parietal sites at later time points. 

Notably, an earlier peak at frontal sites is a commonly observed pattern in P300 studies (Polich, 

2007; Polich et al., 1997).16 

There was no interaction of emotion and probability on the late positivity. Although an 

interaction would have provided the strongest evidence that these factors were modulating the 

same component, the lack of an interaction does not rule out the possibility that emotion and 

probability affected the same functional process independently. Indeed, among the factors known 

to modulate the P300, some have an additive effect. For example, R. Johnson Jr.’s (1986) model 

of the factors affecting P300 amplitude proposes that “stimulus value” has an additive relationship 

to stimulus probability. This is based on studies that manipulated value via the monetary reward 

associated with a stimulus, but as R. Johnson, Jr. (1986) notes “presumably there are many 

                                                
16 I take no strong position on the interpretation of this early frontal positivity, but one possibility is that it 
reflects the P3a component, which is related to but distinct from the P300 (or P3b). In some theoretical 
frameworks, the P3a and P3b are separable components resulting from the activation of the same 
norepinephrine (NE) neurotransmitter system (e.g., Nieuwenhuis et al., 2005; Polich, 2007). The P3a 
represents effects of NE in frontal regions controlling orienting and attention, and the P3b represents effects 
of NE at temporal and parietal regions underlying decision making and/or memory processes. Under this 
interpretation, the pattern observed for both probability and emotion suggests both are related to the 
activation of the locus coeruleus-norepinephrine system, in line with Nieuwenhuis et al. (2005). 
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instances in which the significance of events is determined by experience” (p. 373)—i.e., 

emotional stimuli. 

 Although the valence of the word did not interact with the probability effect, the overall 

emotional context may have interacted with the effects of probability: in contrast to the names 

study and many previous P300 studies, the positivity observed in the emotional words study was 

not graded with probability. Instead, only the 20% condition significantly differed from the other 

conditions. It is unclear whether this difference reflects anything meaningful or is simply a matter 

of power due to greater trial to trial variability in the emotion study. The general pattern looks very 

similar in the emotion and names studies (see Figures 2.5 and 2.11), but is more spread out in 

time in the emotion study. One possibility is that the emotional context “raises the stakes” such 

that words must be lower probability to elicit an increased late positivity. As discussed earlier in 

this chapter, this kind of context effect has been observed previously with taboo words (Fogel et 

al., 2012) and may also account for some effects of self-relevance on the LPC (Fields & Kuperberg, 

2016). 

Is the LPC related to memory? 

 Although the largest ERP difference between remembered and forgotten words was on a 

frontally distributed positivity, remembered words also elicited what appears to be a distinct 

parietal positivity. The “Dm effect”—the difference, at encoding, between remembered and 

forgotten stimuli—varies in timing, scalp distribution, and polarity across studies based on a 

number of different factors including stimulus type, task, and participant strategy (reviewed in A. 

D. Wagner et al., 1999; Wilding & Ranganath, 2012). Although the reasons for specific differences 

are not always known, the reason for the general variability is easily understood. Clearly 

processing within ~1s of stimulus onset is not the only determinant of whether a stimulus will be 

remembered at a later time. In addition, many different cognitive processes will be correlated with 
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later memory and which process most strongly predicts later memory will vary depending aspects 

of the stimulus, context, and perceiver’s goals/strategy.  

The context updating account that originally motivated examination of the relationship 

between P300 and memory argued that because the P300 reflected processing in relation to the 

task-relevant schema of the environment and related memory structures, items with a larger P300 

should be better remembered. It did not argue that the P300 represented the only or even the 

main process of encoding and storage in long-term memory. Thus, under some circumstances, 

other memory processes may play a larger role in which items are remembered and the 

relationship of the P300 to memory may be weakened or disappear. For example, from the 

beginning of research on this question, studies showed that the P300 most strongly predicted 

later memory when participants utilized a rote, rather than elaborative, memorization strategy; 

when an elaborative strategy was used, memory was associated with an increased frontal 

positivity (Fabiani et al., 1990; Karis et al., 1984). 

 More generally, both frontal and posterior positivities are very common manifestations of 

the Dm effect in ERP studies, and a number of studies have observed both as was the case in 

the results presented here. It is not entirely clear why the frontal positivity effect was stronger for 

emotional words and the posterior positivity was stronger for names. Given the findings discussed 

above, one could imagine that the emotional words study led to more spontaneous elaboration 

than the names or perhaps the words were processed more deeply because the task was harder 

(Otten & Rugg, 2001), but these explanations are speculative. 

In any case, we did observe a larger posterior positivity to remembered words as predicted. 

This provides some evidence that activity associated with the LPC is related to memory. Notably, 

this memory effect began later than the main effect of emotion on the LPC. Both the P300 

(Nieuwenhuis et al., 2005; Polich, 2007) and LPC (Delplanque et al., 2006; Foti et al., 2009; Gable 

et al., 2015; Hajcak et al., 2012; MacNamara et al., 2009; Matsuda & Nittono, 2015) are complex 
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components that are generally thought to be generated by multiple sources and have dissociable 

sub-components (see discussion earlier in this chapter).17 That is, of course, consistent with the 

changing scalp distribution over time observed in the present study for both effects of probability 

and emotion. If the positivity associated with later memory is part of the LPC, this suggests that 

only later portions of the LPC were associated with memory in the present work. This is explored 

in greater detail below (see also Footnote 16). 

What is the function of the LPC? 

 The present study was intended to investigate a functional theory of the LPC. I proposed 

that the LPC may in fact be another name for the P300 or at least that these components may 

index significantly overlapping cognitive functions. More specifically, this theory suggests that the 

LPC reflects a process of updating our schema of the current environment in response to stimuli 

that are particularly informative or particularly important (motivationally relevant). To test this 

theory, we investigated the ERP effects of the factors most consistently associated with each 

component: stimulus probability (P300) and emotional valence/arousal (LPC). Although 

probability and emotion did not interact, they elicited similar effects. The biggest difference 

between the effects was the time course (particularly onset), but this difference makes sense 

given what we know about the timing of the P300. As predicted, a posterior positivity overlapping 

in space and time with the LPC was associated with later memory for a word, although this effect 

only overlapped with the later portion of the LPC. Taken together, the results can be seen as 

consistent with the P300-context updating theory of the LPC. However, this is not the same as 

strong evidence in favor of the theory, so it is important to consider alternative explanations. 

                                                
17 Note that this does not mean that these components are not, in some sense, a unitary phenomenon. For 
example, as discussed earlier in this chapter, one theory of the P300/LPC argues that it is generated in 
cortical areas stimulated by the locus coeruleus-norepinephrine system (Nieuwenhuis et al., 2005; Polich, 
2007; see also Footnote 16). In response to motivationally relevant stimuli, NE is released to many cortical 
areas subserving different functions and the P300 is the result of the summated potential of these various 
regions. Under this understanding, the P300 is a coherent phenomenon, but also has subcomponents that 
may have somewhat different time courses and be more or less prominent in different situations. 
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 Attention is probably the psychological construct most consistently associated with the 

LPC. As noted in earlier in this chapter, attention is a broad concept rather than a specific cognitive 

process, and most researchers have not been specific about what attention-related process in 

particularly the LPC might reflect. An exception is Gable et al. (2015), who argue that the LPC 

reflects “motivated [attentional] engagement with visual stimuli” (p. 53) and is generated by activity 

in occipital-parietal visual areas as a result of feedback from subcortical regions (e.g., the 

amygdala in response to emotional stimuli) and/or frontal regions (e.g., in the case of top-down 

effects of task relevance). This explanation is supported by results showing that the time-course 

of the LPC patterns with the expected time-course of attentional engagement given manipulations 

of stimulus duration and task-requirements (Gable et al., 2015), as well as by combined ERP-

fMRI studies that have correlated the LPC with activity in visual areas (among many other neural 

regions; Y. L. Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012; Sabatinelli, Keil, Frank, & Lang, 

2013; Sabatinelli, Lang, Keil, & Bradley, 2007). Taken together, this is probably the most detailed 

and well supported alternative to the P300-context updating theory of the LPC elaborated here. 

However, the studies supporting this account were conducted with emotional pictures and 

the visual attention explanation seems less convincing for the LPC to words. While emotional 

pictures may draw sustained visual attention, there is little further information to extract from a 

word via visual examination after it has been recognized. Thus, visual engagement seems unlikely 

to explain an effect evoked by words that occurs wholly or mostly after the time windows generally 

associated with visual word recognition (Grainger & Holcomb, 2009). As noted above, there are 

likely multiple contributing neural sources and sub-components to the LPC. One possibility is that 

components associated with attentional engagement are most strongly associated with results 

like those of Gable et al. (2015) and the early portion of the LPC observed here, while the later 

portion of the effect seen here is more closely related to context updating and memory processes. 
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Open questions and future work 

It will be important for future research to continue to test these ideas in a number of ways. 

Following from the questions raised above, work with greater spatial resolution, such as joint ERP-

MEG and ERP-fMRI studies should examine the LPC elicited by words and auditory stimuli. 

Ultimately correlations between the LPC and activations in MRI are only correlations: they don’t 

prove which regions generate the LPC. However, regions that are consistently correlated across 

different stimulus type and modalities are stronger candidates. Strategically testing situations in 

which a visual attention account seems less plausible will provide a stronger test of that theory of 

the LPC. It will also be important for more studies to examine ERPs to auditory emotional stimuli. 

Only a few studies have done so to date and these have generally been focused on examining 

effects of prosody and as such have not used designs that are comparable to visual studies (Kotz 

& Paulmann, 2007, 2011). No study has directly compared effects to the same words presented 

visually and auditorily. 

Combining ERPs with methods with better spatial resolution may also help to test the 

relationship of the LPC to the P300 and context updating, particularly if, like the present work, 

manipulations expected to elicit a classic P300 effect are also included. MEG studies may be 

particularly interesting. MEG is sensitive to a smaller subset of neural regions than ERP (primarily 

cortical sulci near the surface of the scalp), so ERP and MEG effects will not always parallel each 

other. It is apparently well-known among the MEG community that the P300 does not always 

show up as expected in MEG studies, suggesting that at least some of its generators are not 

detected by MEG. If robust LPC effects were found in the absence of strong P300 effects in MEG 

studies, this would provide evidence that the components are distinct. On the other hand, if both 

effects are small, absent, or distributed differently compared to ERP, this would provide evidence 

in the opposite direction. Although a few studies have examined early effects of emotion using 
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MEG (Keuper et al., 2014; Peyk, Schupp, Elbert, & Junghofer, 2008), none that I’m aware of have 

examined (or at least reported) an MEG correlate of the LPC. 

It will also be important for future studies to further examine the relationship between the 

LPC and memory. One reason that posterior memory effects may have been weak in the present 

study is that words were relatively homogenous within each emotional category. Since effects 

were tested in an orthogonal design, the effect of memory status was tested independently and 

there may have been relatively little trial to trial LPC amplitude variability once emotional category 

was controlled for. This would tend to produce a weak relationship between the LPC and later 

memory. While clear categorical differences were necessary for testing categorical probability 

effects in the present work, future work in which more diverse emotional stimuli are used may 

provide a better test of the LPC’s relationship to memory. 

Summary and conclusions 

 Questions about the function represented by ERP components are inherently difficult to 

answer (Luck, 2014, Ch. 3 Suppl.), and functional theories are still debated for many components 

that have been studied for decades such as the N400 (Kutas & Federmeier, 2011) and P300 

(Polich, 2012). Of course, this problem is not unique to ERP components: many of the same 

problems are faced when using fMRI and other techniques to try to understand the function of 

particular brain regions as can be seen in the discussion of the function of the medial prefrontal 

cortex in Chapter 1. Nevertheless, these questions are important. Although techniques like fMRI 

and ERP can often provide key insights while remaining agnostic to the exact meaning of the 

regions/components activated (Donchin, 1981; Luck, 2014, Ch. 4), it should be obvious that 

understanding the cognitive processes that are being modulated in our studies will greatly 

increase our understanding of the brain and cognition. In the case of the LPC, very little work has 

been done to date to attempt to understand the precise function of this component. Consequently, 

the theoretical perspective and empirical results presented here should be seen only as a starting 
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point. The results of the present work provide at best circumstantial evidence for the P300-context 

updating theory of the LPC. However, it is hoped that future work testing predictions of this theory 

and others (e.g., Gable et al., 2015) will increase our understanding the LPC, emotion, and 

cognition more generally whether the specifics of the theory argued here prove to be correct or 

even widely off the mark. 
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Chapter 3: The problem of evidentiary value in the statistical 

analysis of ERP data and mass univariate statistics as a 

solution 

Introduction 

We are awash in a sea of uncertainty, caused by a flood tide of sampling and 

measurement errors, and there are no objective procedures that avoid human 

judgment and guarantee correct interpretations of results. (Abelson, 1997, p. 13) 

 The predicament Abelson identifies is perhaps particularly acute in event-related potential 

(ERP) research. The event-related activity of interest is embedded in much larger noise in the raw 

EEG, leading to a smaller signal to noise ratio than in many other domains. In addition, the 

relatively large resource and time commitment to collect ERP data means most ERP studies have 

small sample sizes, further increasing sampling error. 

 Because we are so accustomed to the procedures we use to deal with these problems, it 

is easy to forget just how much of a challenge we face. Statistical techniques are what allow us 

to draw conclusions in the face of noisy data. With procedures like ANOVA and regression, we 

divide the variability into signal and noise. Hypothesis testing is meant to determine when a 

difference or relationship is likely to represent something real (in the population) versus a random 

result of sampling error. However, it is easy to forget that the statistical procedures we use are 

fragile and contingent. They rely on assumptions which are often false and can easily be used in 

ways that undermine the conclusions they allow us to draw—or render their results invalid 

altogether. It is easy to suspend human judgment and use statistics mindlessly (Gigerenzer, 

2004)—“to apply statistical tests in a quasi-mechanical way, without giving adequate attention to 
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what questions these numerical procedures really answer” (Gigerenzer et al., 1989, p. 106)—and 

in so doing to draw conclusions that seem to be justified by the data but in fact do not follow at all. 

In this chapter I discuss issues in the analysis of ERP data that undermine our ability to 

draw strong conclusions and contribute to spurious effects in the literature. I then propose 

permutation-based mass univariate statistics as an approach that fits the nature of ERP better 

than traditional analysis approaches and offers an improvement with regard to many of these 

issues. I present new software to implement these tests for factorial designs along with simulation 

studies examining the properties of these tests. As we will see, at least in some common analysis 

situations, these mass univariate permutation tests can provide greater power and greater 

flexibility compared to the traditional mean time window parametric approach while appropriately 

maintaining the Type I error rate. First though, I review the problems that these tests are intended 

to address. 

P-values, positive predictive value, and the interpretation of null hypothesis tests 

Null hypothesis significance testing remains the dominant statistical paradigm in 

psychology and neuroscience (for better or worse: Nickerson, 2000). Within this framework as it 

is usually practiced, everything comes down to the p-value. It is from the p-value that researchers 

conclude that an effect/difference/relationship is “real”—i.e., whether it reflects a non-zero value 

in the population rather than the result of sampling error. When the p-value is smaller than some 

pre-determined criterion, we describe an effect as “significant” and it is then treated as real or 

reliable. Unfortunately, what the p-value actually means is widely misunderstood (Greenland et 

al., 2016; Haller & Krauss; Hubbard & Bayarri, 2003; Nickerson, 2000). 

It is generally recognized that it is difficult to draw any conclusions from a non-significant 

effect for several reasons. In fact, it is difficult to even publish a non-significant effect (a 

phenomenon that leads to its own problems: Rosenthal, 1979; Simonsohn, Nelson, & Simmons, 

2014). We draw conclusions and make claims only when we find significant results, so we are 
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interested in the reliability/replicability specifically of significant results. That is, a key question 

regarding the confidence we have in published results and our own results is this: how likely is it 

that an effect is real (i.e., the null hypothesis is actually false) given that it achieves statistical 

significance?  

The p-value itself is often interpreted as giving us the answer to this question, but this is 

incorrect. The p-value indicates the probability of obtaining the results we obtained (or results 

reflecting a larger difference/effect) if the null hypothesis were true. It does not give us the 

probability that the null hypothesis is true given the results we obtained (Berger & Sellke, 1987; 

Colquhoun, 2014; Hubbard & Lindsay, 2008; Nickerson, 2000; Sellke, Bayarri, & Berger, 2001). 

In formula form: 

𝑝 = 𝑃(≥ 𝑑𝑎𝑡𝑎 | 𝐻0 )  ≠ 𝑃(𝐻0 | 𝑑𝑎𝑡𝑎) 

The probability that the null hypothesis is actually false given a significant result (e.g., p 

< .05) is referred to as the positive predictive value (PPV; Ioannidis, 2005) and can be calculated 

as follows: 

𝑃𝑃𝑉 = 𝑃(𝐻1 | 𝑠𝑖𝑔. ) =   
𝑃(𝐻1)×𝑃𝑜𝑤𝑒𝑟

𝑃(𝐻1)×𝑃𝑜𝑤𝑒𝑟 + 𝑃(𝐻0)×𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒18
 

Thus, in addition to the p-value, the confidence we can have in a statistically significant 

finding is related both to the prior probability that the null is false and to power. The relationship 

to power in particular is often not appreciated, as power is commonly understood to be related 

only to Type II errors, and not Type I errors. (i.e., it is assumed low power is irrelevant once a 

significant effect is found; for further discussion of the relationship between power and reliability 

of results, see Button et al., 2013; Colquhoun, 2014; Szucs & Ioannidis, 2017).  

                                                
18 Following common practice, the term “Type I error rate” here and throughout this chapter does not refer 
to the overall proportion of studies that will produce a Type I error, but rather to the probability of a Type I 
error given that the null is true. Similarly, power refers to the probability of obtaining a significant result when 
the alternative hypothesis is true. 
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Let us consider a hypothetical experiment. Assume that we have moderate power of 0.50 

and we appropriately maintain the Type I error rate at α = 0.05. Since we want an unbiased test 

of which hypothesis is true, we will give them equal priori probability: P(H0) = 0.5 and P(H1) = 0.5. 

In this case, the probability that the null is true given a significant result is 0.09 (the probability 

that the null is true is, of course, 1 – PPV). Note that this is significantly higher than the p-value, 

(which is 0.05 or less) or the α-level (which is .05). In fact, given an unbiased prior distribution on 

the hypotheses (i.e., the alternative and the null are assumed to be equally likely19), the probability 

that the null is true will be greater than the p-value and α-level unless power is .95 or greater, a 

value very rarely realized. In other words, the p-value is nearly always an underestimate of the 

probability that the null is true (see also Berger & Sellke, 1987; Colquhoun, 2014; Sellke et al., 

2001). 

Now consider a common situation in ERP studies: a small effect is found in study with a 

relatively small sample size (so power is low) in a time window and/or spatial region where no 

effect was expected a priori (so the priori probability of the alternative should be considered low). 

For purposes of calculation, we’ll describe this situation as having a Type I error rate = 0.05, power 

= 0.20, and the prior probability that the alternative is true = 0.10. In this case the probability that 

the null is true is nearly 60% even though p < .05. In other words, despite a significant effect, the 

null hypothesis is more likely to be true than false. 

Another underappreciated problem is that while α may be set at 0.05 in most neuroscience 

experiments, the Type I error rate is rarely truly maintained at this level.20  Psychologists and 

                                                
19 In this case (i.e., P(H0) = 0.5 and P(H1) = 0.5), the calculation of PPV can be reduced to: 

𝑃𝑃𝑉 =  
𝑃𝑜𝑤𝑒𝑟

𝑃𝑜𝑤𝑒𝑟 + 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒
 

20 Here and throughout this chapter, I use alpha to refer to the value set by the experimenter (i.e., the value 
to which the calculated p-value is compared to determine significance—nearly always 0.05), intended as 
the long-run Type I error rate. In contrast, I use Type I error rate to refer to the actual probability of finding 
a significant result given that the null is true. When researcher degrees of freedom and multiple 
comparisons are appropriately dealt with (and all the assumptions of the test are met), these values match, 
but we are concerned here with situations where they do not. 
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neuroscientists are becoming increasingly aware of how flexibility in research design and analysis 

can increase the Type I error rate—so called “researcher degrees of freedom” (Simmons, Nelson, 

& Simonsohn, 2011). As will be discussed in greater detail below, in the realm of ERP research, 

one example is the tendency to conduct statistical tests in multiple time windows or to choose 

time windows based on observation of the data. This creates a multiple comparisons problem, 

allowing for multiple chances to find a significant effect, and thereby increasing the probability of 

finding at least one significant effect even if all null hypotheses are true. The case described above, 

where a small effect was found in a time window where no effect was expected, likely reflects a 

situation where multiple time windows were tested (including time windows that did not 

correspond to a particular a priori hypothesis). Let us imagine that by testing several time windows, 

the overall Type I error rate is increased to 0.10 instead of the nominal 0.05. Again assuming 

power is 0.20 and the prior probability of the alternative is 0.10, there is now an 82% chance that 

the null is actually true even though we have rejected the null with p < .05. Even if we assume the 

alternative hypothesis has a priori probability of 0.5, the probability that the null is true given a 

significant result in this situation (low power, increased Type I error rate) is greater than 30%—

much higher than the 5% many researchers would assume. 

To summarize: when power is low and/or the Type I error rate is inflated, a significant effect 

may offer little to no evidence that the null hypothesis is actually false, particularly when dealing 

with unpredicted effects. Unfortunately, these conditions are common. Bakker, van Dijk, and 

Wicherts (2012) suggest that the average power in psychology is around 0.35 and Button et al. 

(2013) suggest that the average power for experiments in neuroscience is even worse at 0.2 (see 

also Szucs & Ioannidis, 2017). As will be discussed below, inflation of the Type I error rate is 

similarly widespread. This suggests that false results are regularly published and cited. In fact, it 

is exactly the logic laid out above that led Ioannidis (2005) to famously conclude that most 

published research findings are false (see also Colquhoun, 2014). Unfortunately, there is some 
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empirical evidence to support this claim (Open Science Collaboration, 2015) as well as evidence 

that the problem may be worse in cognitive neuroscience than other areas of psychology (Szucs 

& Ioannidis, 2017). These issues are directly related to the much discussed “replication crisis” in 

psychology and neuroscience (Pashler & Harris, 2012; Pashler & Wagenmakers, 2012) and 

associated problems facing the field (Srivastava, 2016). 

Maximizing PPV 

Clearly PPV values as low as those calculated above significantly undermine the research 

process. The point of null hypothesis tests is to allow us to distinguish really existing effects from 

those generated by random sampling error. If the probability that the null hypothesis is true when 

we find a significant effect is 30% or 60% or 80%, then our statistical tests are essentially useless. 

As long as null hypothesis testing is going to be used (a matter of legitimate debate that will not 

be discussed here; see Gigerenzer, 2004; Harlow, Mulaik, & Steiger, 1997; Nickerson, 2000), we 

need to take very seriously research procedures and analysis approaches that maximize PPV. 

PPV is affected by three key values: power, the Type I error rate, and the priori probability 

of the alternative and null. The prior probability of the alternative hypothesis is increased by clear 

and strongly justified theories and hypotheses (Fiedler, 2017), but beyond that it is not something 

we control: determining which hypothesis is true is, after all, the point of experiments and null 

hypothesis testing. In any case, for the purposes of statistical calculation we must be unbiased 

and cannot simply assume that our theories are true a priori (in which case we might as well not 

collect data at all). Thus, if we want meaningful hypothesis tests, our goal is to maximize power 

and minimize the Type I error rate. 

Power itself is determined by three values: the effect size, the sample size, and the Type 

I error rate. The true effect size in the population (i.e., the ratio of the size of the effect to the 

population variability) is a property of the phenomenon under study and is out of the 

experimenter’s control. However, observed effect size in a given experiment is also influenced by 
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measurement error, which is under the experimenter’s control. Thus, power can be increased by 

increasing the number of trials contributing to ERPs, collecting data that is as clean and artifact 

free as possible, properly detecting and removing trials with artifact, designing studies with stimuli 

and procedures that reduce variability, and so on. These are obviously important issues about 

which there is much to be said, but they are issues of experimental design and data processing, 

not statistics, and that is not the focus of this chapter (see Luck, 2014 for general advice). 

Regarding sample size, EEG studies are expensive in terms of time and money, so sample sizes 

tend to be small. There is a strong argument to be made that we would be better off if we ran less 

overall studies and focused on conducting studies with larger sample sizes that are particularly 

well-designed and motivated (Button et al., 2013; Szucs & Ioannidis, 2017). But that argument is 

also not the focus of this chapter, so it will suffice to say that all else being equal, it’s better to use 

larger sample sizes. 

The last factor affecting power, the Type I error rate, brings us to a crucial tension. Our 

goal is to minimize the Type I error rate and maximize power, but, all else being equal, reducing 

the Type I error rate also reduces power. In theory, the Type I error rate is set by the researchers 

via the alpha level, which is nearly always set at 5% in ERP studies. In fact, practices that inflate 

the Type I error rate above alpha are widespread, and this issue will be the focus of the following 

section. Because inflated Type I error rates lower PPV, it is important that we recognize and 

correct these practices. However, the relationship between power and Type I error makes this 

particularly challenging: if we properly maintain the Type I error rate by reducing power, we may 

have done nothing to increase confidence in our results. 

Multiple comparisons problems in ERP analysis 

 Research practices that inflate the Type I error rate and increase the likelihood of false 

positive results appear to be widespread across psychology and neuroscience (John, 

Loewenstein, & Prelec, 2012; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Luck & 
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Gaspelin, 2017; Masicampo & Lalande, 2012; Simmons et al., 2011; Vul, Harris, Winkielman, & 

Pashler, 2009). While a number of such practices are likely common in ERP research, here I focus 

specifically on analysis approaches that inflate the Type I error rate due to both explicit and implicit 

multiple comparisons across space and time. 

 Consider an ERP experiment where data is recorded from 32 electrodes at a sampling 

rate of 500 Hz. Epochs extending to 1000 ms after stimulus onset are extracted from this data. 

Even after individual trials are averaged to form ERPs, there are 16,000 data points for each 

subject in each condition. This presents a massive multiple comparisons problem. That is, in such 

an experiment, it is almost guaranteed that in some time window at some point on the scalp there 

will be an effect that reaches significance in a conventional analysis even if the null hypothesis is 

true at all time points and electrodes. Unfortunately, the most common ways of analyzing ERP 

data do not sufficiently address this multiple comparisons problem. This problem has been 

reviewed in detail by Luck and Gaspelin (2017), so I will only briefly describe it here (see also, 

Kilner, 2013; Kriegeskorte et al., 2009; Luck, 2014, Ch. 10). 

Analyzing results across time 

 The most common way to analyze ERP data is to reduce the large amount of recorded 

data before statistical analysis. In the time domain, this is conventionally achieved by identifying 

a time window of interest and either calculating the maximum or minimum value (peak amplitude) 

or average value (mean amplitude) across that time window (Luck, 2014, Ch. 10). The key issue 

is how to choose the time window(s) to use. It is common to identify time windows based on 

examination of the obtained data, but this introduces a significant bias. As noted above, it is nearly 

guaranteed that there will be a difference that surpasses a conventional significance threshold 

somewhere in the spatiotemporal matrix of ERP data, even if all null hypotheses are true. 

Choosing a time window based on where differences are observed in the data is essentially 

equivalent to conducting an analysis at all possible time windows and reporting the one that 
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produces the largest effect. Framed in this way, the multiple comparisons problem and inflation of 

the Type I error rate should be obvious. Because all these many possible analyses are not actually 

conducted, this is often called the problem of implicit multiple comparisons, and many researchers 

appear unaware of the extent to which this can inflate the false positive rate and undermine 

confidence in significant results. 

 It is easy to understand why this approach is so common: if a time window is chosen a 

priori, an experimenter will have reduced power unless the effect coincides exactly with the 

chosen time window and will have no power to detect effects wholly outside the time window. An 

approach that only allows researchers to find effects they already expect is not particularly 

conducive to the practice of basic science. And, as laid out above, low power is as much a hinder 

to confidence in our conclusions as Type I error rate. As a result, there is very much a damned if 

you do, damned if you don’t aspect to choosing time windows in ERP analysis. A variety of 

methods have been proposed to deal with this dilemma within the traditional mean time window 

parametric approach (Brooks, Zoumpoulaki, & Bowman, 2017; Luck & Gaspelin, 2017), but none 

is wholly satisfactory or addresses all situations. 

 Whether time windows are chosen a priori or based on the observed data, it is also 

common to examine multiple time windows. Again, the motivation is understandable: we want to 

be able to detect effects wherever they may be and it seems contrary to the scientific endeavor 

to ignore the majority of the data we collect. When each time window examined is motivated by 

distinct a priori hypotheses, this should not be considered a multiple comparisons issue. But when 

time windows are examined with no associated hypotheses (e.g., for completeness) or multiple 

time windows are examined because the researchers are not sure where to expect effects, this 

obviously increases the chance of obtaining significant effects where no real effect exists. 
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Analyzing results across space (electrodes) 

 Reducing data in the spatial domain can be done similarly to the time domain: by 

averaging across a subset of electrodes. As in the time domain, if the electrodes in this subset 

are chosen based on where effects occur in the obtained data, this introduces a significant bias. 

If not, all the problems associated with strict a priori time windows apply. Another common 

approach is to include spatial factors in a factorial ANOVA. This approach has the advantage of 

obviating the need to choose an a priori region and it does reduce the multiple comparisons 

problem. However, it does not eliminate the problem and it introduces additional problems.  

To understand how to interpret an interaction with region/electrode, it is important to 

understand the biophysical basis of EEG/ERP (for a more detailed explanation see Buzsáki, 

Anastassiou, & Koch, 2012; Luck, 2014). ERP components are primarily a reflection of post-

synaptic potentials in cortical pyramidal cells. These post-synaptic potentials create electrical 

dipoles: that is, they generate positive voltage on one side of the pyramidal layer and a 

corresponding negative voltage on the other side. The electrode montage on the scalp only covers 

approximate half of a full sphere. So when an electrical dipole is oriented vertically (i.e., parallel 

to the spine), only one side of the dipole will be recorded and all or most of the electrodes on the 

scalp will record voltage in the same direction. If the dipole is oriented horizontally (perpendicular 

to the spine), both sides will be recorded, and a component will appear as a positive deflection at 

some sites and a negative deflection at others. As a result, the orientation of the source dipoles 

of an effect will determine whether it is registered in a factorial ANOVA as a main effect, an 

interaction with region/electrode, or both. It is also important to note that a dipole on a gyrus and 

a dipole in an adjacent sulcus will have different orientations by 90º. Thus physically close sources 

in functionally similar regions of the brain can register very differently on the scalp and in a factorial 

ANOVA with region/electrodes factors.  
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The important point is that in such a factorial ANOVA, a main effect of factor A and an A x 

electrode/region must generally be interpreted in the same way: either simply indicates an effect 

of factor A with telling us much else (for a more detailed description of why, see Luck, 2014, pp. 

316-317). All effects are generated by dipoles that will affect different electrodes differently and 

thus will differ across the scalp, so every effect will generate an interaction with electrode/region. 

Unless a dipole is oriented such that the positive and negative ends cancel each other perfectly 

across the recorded electrodes, it will also generate a main effect. Whether one or both of these 

effects reaches statistical significance is simply a combination of power and dipole orientation. 

This means two things. First, every effect has two chances to reach significance. If multiple 

spatial factors are included (e.g., an anterior-posterior factor and a hemisphere factor) then there 

are even more chances. This obviously inflates the Type I error rate.21 Second, the variance due 

to a given effect is divided between two or more sources in the ANOVA model, which undermines 

power. Thus dealing with data across electrodes by including spatial factors in an ANOVA can 

actually inflate Type I error rate and reduce power, a particularly bad combination. 

There is an additional problem with electrode/region factors in ANOVA models. One of the 

assumptions of the ANOVA is that all data points are independent observations. Because all 

electrodes record voltage from a (differently weighted) mixture of the same underlying neural 

sources, different electrodes or regions at the same time point are fundamentally not independent 

observations. This means that the degrees of freedom for any interaction with electrode/region 

will be inflated, leading to a narrower F distribution than is justified, which inflates the Type I error 

rate. 

                                                
21 It is a common misperception that factorial ANOVA controls the Type I error rate or corrects for multiple 
comparisons across the multiple effects tested within the model (i.e., all main effects and interactions). In 
fact, a factorial ANOVA consists of multiple completely independent (i.e., orthogonal) tests which each have 
Type I error rate at the chosen alpha. Generally, it is assumed that each effect tests a distinct hypothesis 
and so this is not considered a multiple comparisons issue, but for the reasons laid out above, this is not 
the case with interactions involving spatial factors. 
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Permutation-based mass univariate statistics 

 One way to address the implicit multiple comparisons problem is to make it explicit: 

conduct a separate statistical test at multiple or all time points and electrodes and apply some 

multiple comparisons correction to control the family-wise Type I error rate. Because this method 

deals with a large number of dependent variables by conducting many univariate analyses, it is 

called the “mass univariate approach”.22 The mass univariate approach is at the core of standard 

analysis approaches in functional MRI research (Woolrich, Beckmann, Nichols, & Smith, 2009) 

and other domains such as genetics, but has been much less commonly used in ERP research. 

 The challenge of applying the mass univariate approach is that conventional multiple 

comparison corrections such as the Bonferroni correction reduce power to unacceptably low 

levels when applied to the large number of time points and electrodes in a standard ERP study. 

Several alternative methods of correction more appropriate for mass univariate analysis have 

been developed. These generally fall into one of two types: false discovery rate-based corrections 

and permutation-based corrections. Here I focus on permutation-based approaches (see Groppe 

et al., 2011a for a review of false discovery rate approaches as applied to ERP data). I will first 

review the basic logic of permutation tests and then discuss how they can be used to correct for 

multiple comparisons. 

Introduction to permutation-based statistical tests 

 A permutation test is a form of non-parametric null hypothesis test. Rather than calculating 

a p-value from a theoretical distribution justified by the assumptions of the test (e.g., that the data 

are drawn from normally distributed populations), the null distribution is empirically constructed 

by resampling the data. Consider a simple within-subjects priming experiment with two mean 

reaction time measures, one for the primed condition and one for the unprimed condition, from 

                                                
22 This is in contrast to multivariate approaches, which are generally not feasible with ERP data because 
the number of dependent variables (i.e., time point and/or electrodes) exceed the sample size (Wheldon, 
Anderson, & Johnson, 2007). 
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each of 24 subjects. To conduct the permutation test, the primed and unprimed data is randomly 

switched or not switched for each subject independently. In other words, we create a situation in 

which the null is true by definition (because now the primed and unprimed conditions have data 

draw from the same population) but the structure and variability of the data is otherwise the same. 

A paired sample t-statistic is calculated for this randomly permuted data and this is repeated for 

a large number of permutations.23 The proportion of t-values in this null distribution that are as 

extreme or more extreme as the observed t-value from the unpermuted data is the p-value—i.e., 

the probability of obtaining the observed t if the null were true (for a more in depth description of 

permutation tests than provided here, see Good, 2005; Groppe et al., 2011a; Manly, 1997; Maris 

& Oostenveld, 2007). 

When the assumptions of the t-test are met, the empirical distribution of t-values will be a 

good approximation of the t distribution,24 and the permutation test will therefore give the same 

answer as the parametric t-test with some generally small error assuming reasonable sample 

sizes. When the normality assumption of the t-test is not met, the permutation test will give a more 

accurate p-value than the parametric test. Thus, under conditions where both tests are justified, 

the parametric and permutation tests are approximately equally powerful and both maintain the 

Type I error rate appropriately, but the permutation test is justified in a wider set of circumstances. 

Permutation statistics for factorial designs 

 It is also possible to conduct permutation based versions of ANOVA using the F-statistic. 

For one-way ANOVA, this works exactly the same as the t-test (i.e., the data for each subject is 

randomly reshuffled among all the conditions of the independent variable). For factorial designs, 

the situation is somewhat more complicated. The issue of permutation tests for factorial designs 

                                                
23 In theory, all possible permutation should be examined, but even with moderate sample sizes this is often 
impractical (e.g., with 24 subjects in a two-condition experiment, there are over 16 million permutations). 
Fortunately, a large number of random permutations will give a sufficiently precise estimate of the p-value. 
24 With an infinitely large sample size and infinite permutations, the empirical distribution would perfectly 
match the parametric t-distribution. 
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and multiple regression has been discussed in depth by other authors (Anderson, 2001; Anderson 

& Ter Braak, 2003; Winkler, Ridgway, Webster, Smith, & Nichols, 2014) and so will only be briefly 

described here. 

 Let us consider a simple two-way design with factors A and B. There are three effects in 

the ANOVA model: A, B, and AxB. In parametric ANOVA, the F-value calculated for each effect is 

compared to a different F-distribution depending on its degrees of freedom. In the same way, in 

the permutation ANOVA separate null distributions must be constructed for each effect. The 

question that guides these permutations is which data is exchangeable under the null hypothesis. 

For example, we can’t test the effect of A by freely permuting data across all cells of the factorial 

design because the data is only exchangeable across all cells if the null is true for all three effects 

in the design; we wish to independently test whether the null hypothesis is true for A. Appropriate 

exchangeability under the null can be achieved in one of two ways (discussed in greater detail in 

Anderson & Ter Braak, 2003). The first is via restricted permutations. For example, to test the 

effect of factor A, we would only permute data across conditions of A while keeping each data 

point in the same condition of factor B.25 This provides an exact test: that is, the Type I error rate 

is maintained at exactly the specified level. The second method is to subtract the effects that are 

not being tested—in this case the effect of B and AxB interaction—to obtain residuals such that 

the null effect is true for B and AxB. These residuals can then be permuted freely across all cells 

of the design under the assumption of the null hypothesis for A. However, the effects that are 

subtracted to form the residuals are only estimates of the true population effects. As a result, this 

permutation of residuals provides only an approximate test: the Type I error rate will be asymptotic 

to α as the sample size increases (because the estimate of the effects being subtracted is 

asymptotic to the population parameter as the sample size increases). 

                                                
25 Mathematically, this is equivalent to averaging across all the conditions of B and then simply conducting 
a one-way ANOVA, and this is an alternative way of computing the same result. 
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 From the perspective of maintaining the Type I error rate, the restricted permutation 

method is clearly preferable, but this method is not possible for all effects. For the AxB interaction, 

if permutation is restricted within both A and B, the only permutation possible is the original data. 

In this case a different form of the restricted permutation method is possible in some cases. If 

either factor A or B has only two levels, it is possible to subtract across the levels of that factor 

and then conduct a one-way ANOVA (i.e., a test of whether the difference in factor A changes 

across levels of factor B is a test of the interaction effect). This will provide an exact test of the 

interaction. However, for designs in which more than one factor has more than two levels, only 

the permutation of residuals method is available. The actual Type I error for the permutation of 

residuals method with ERP data will be a focus of simulation studies later in this chapter. 

Permutation-based correction of multiple comparisons 

 For present purposes, the value of permutation tests is that they can be used to correct 

for multiple comparisons while maintaining acceptable power by taking into account the structure 

and correlation of ERP data across time and space. There are two main methods for doing this 

currently in use. I will discuss these in terms of ANOVA designs and the F-statistic, but they can 

also be conducted as t-tests or other statistics. These techniques are described in greater detail 

in Groppe et al. (2011a). 

 The first method uses the Fmax statistic (first described by Blair & Karniski, 1993). In this 

approach, for each permutation of the data an F-statistic is conducted at each time point and 

electrode. The largest F-value observed across all time points and electrodes is recorded as Fmax. 

This is repeated for a large number of permutations to empirically construct a distribution of Fmax 

under the null hypothesis. The observed F-value at each time point and electrode is then 

compared to the Fmax value at the 1 – α percentile of the distribution and data points with an F-

observed exceeding this critical value are considered significant. If the voltage recorded at all 

electrode and time point combinations were completely independent of each other, this approach 
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would give approximately the same answer as the Dunn–Šidák correction used with parametric 

ANOVA. However, data at adjacent temporal and spatial position are obviously strongly positively 

correlated. This means that the Dunn–Šidák correction (which assumes independence) or 

Bonferroni correction (which assumes negative correlation) will be conservative (the Type I error 

rate will be significantly below the nominal α), whereas the Fmax permutation procedure will have 

greater power while accurately maintaining the Type I error rate at α. 

 The advantage of the Fmax procedure (over the cluster mass procedure discussed next) is 

that it provides strong familywise error correction: each electrode-time point combination can be 

regarded on its own with the same confidence as any significant effect. The procedure therefore 

allows for statistically justified claims to be made about the exact time points and locations that 

are found to be significant. The downside to the Fmax procedure is that it may have relatively low 

power compared to traditional analysis approaches. This also somewhat undermines its 

advantages, since the extent of significant results will underestimate the true extent of effects 

unless the sample size or effect size are very large. This will be discussed more in relation to the 

simulation results later in this chapter. 

 The second approach is the cluster mass permutation test (first described in the context 

of MRI research by Bullmore et al., 1999; first described for EEG data by Maris & Oostenveld, 

2007). This technique is based on the knowledge that true effects are not likely to appear at 

individual time points and/or electrodes, but instead will appear at several adjacent time points 

and electrodes. An a priori threshold for inclusion in a cluster is specified. Often this is the F-value 

that would indicate significance if no multiple comparisons procedure were applied. For each 

permutation, any adjacent electrodes and/or time points that exceed this threshold are considered 

to be in the same cluster and all the F-values in a given cluster are summed together to generate 

a cluster mass statistic. The largest such cluster mass from each permutation is retained and 

these form the null distribution. All clusters mass statistics in the unpermuted data are then 
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compared to the cluster mass value at the 1 – α percentile of the null distribution and any that 

exceed this value are considered significant. 

 Unlike the Fmax procedure, the cluster mass procedure provides only weak family-wise 

error correction. If the null hypothesis is true at all electrodes and time points examined, there is 

only an α chance that any cluster will reach significance; however, significance applies only to the 

cluster as a whole—it cannot be used to conclude with any specified level of confidence or 

likelihood of Type I error that an effect is actually present at any given time point and/or electrode 

included in the cluster. In many cases this downside is not much a problem. In most ERP studies, 

hypotheses and conclusions are not dependent on precisely when an effect starts and stops, for 

example. In fact, the traditional mean window/ROI approach tells us even less about the temporal 

and spatial extent of effects. The upside to the cluster based procedure is that it can be 

significantly more powerful than the Fmax procedure, particularly for effects that are widespread in 

space and time. 

Software and Simulation Studies 

 There are currently two widely available implementations of permutation tests for ERP 

data: FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), which is a complete EEG data 

processing and analysis package, and the Mass Univariate Toolbox (Groppe et al., 2011a; Groppe, 

Urbach, & Kutas, 2011b), which is generally used in conjunction with EEGLAB (Delorme & Makeig, 

2004) and ERPLAB (Lopez-Calderon & Luck, 2014).  

These toolboxes are fairly easy to use and offer many options and features. However, 

both are restricted in the research designs that can be accommodated: the Mass Univariate 

Toolbox only implements t-tests; FieldTrip implements one-way ANOVA, but not factorial ANOVA. 

It is possible to use both FieldTrip and the Mass Univariate Toolbox to test main effects in factorial 

designs by first averaging across all other factors and then conducting a t-test or one-way ANOVA. 

Similarly, it is possible to use the method of subtraction described above to reduce some 
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interaction effects to a one-way design that can be tested with these toolboxes. But there is no 

widely available software that uses the permutation of residuals method and easily 

accommodates all factorial designs. 

Here I introduce the Factorial Mass Univariate Toolbox (FMUT): a new extension of the 

Mass Univariate Toolbox to analyze within-subject factorial designs via either the Fmax or cluster 

mass procedures.26  The functions provided in this extension work similarly to existing Mass 

Univariate Toolbox functions and replicate much of their functionality, but extend this to factorial 

designs. For main effects, the FMUT functions provide an exact test via the restricted permutation 

method. For interaction effects they can utilize either the restricted permutation method (where 

possible) or the permutation of residuals method. 

In the following section, I use this software to analyze the properties of these tests via 

simulation studies. These studies address two key issues relevant to the widespread adoption of 

these analysis techniques: 

1. Although the permutation of residuals method is only guaranteed to maintain Type I error 

rate as the sample size grows large, previous simulation studies have shown that the Type 

I error rate is not inflated even with moderate sample sizes (Anderson & Ter Braak, 2003; 

Still & White, 1981). However, the actual Type I error rate will depend on the nature of the 

data. Previous studies have shown that permutation of residuals appropriately controls the 

Type I error rate and corrects for multiple comparisons with fMRI data (Winkler et al., 2014). 

In the first set of simulations, I test whether this also holds with ERP data. 

2. The increased flexibility while appropriately controlling the Type I error rate that 

permutation tests offer is not of much value if they don’t also provide sufficient power. In 

the second set of simulations, I test the relative power of the Fmax and cluster mass 

                                                
26 This software is under a free and open source license and will soon be made publicly available. For now, 
a beta version is available by contacting the author. 
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methods compared to traditional mean window parametric ANOVA for some common ERP 

components. 

General methods 

 Simulation studies were conducted according to the same general approach described by 

Groppe et al. (2011b). Realistic EEG noise epochs were obtained from EEG data collected in our 

lab from 49 subjects completing an AX-CPT task as part of several studies. Briefly, participants 

saw a series of letters and had to press a button whenever they saw X preceded by an A (Rosvold, 

Mirsky, Sarason, Bransome, & Beck, 1956). EEG data was recorded from 32 Ag/AgCl electrodes 

using a BioSemi ActiveTwo system (biosemi.com), low-pass filtered online at 102.4 Hz, and 

continuously sampled at 512 Hz. In EEGLAB (sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004) 

and ERPLAB (erpinfo.org/erplab; Lopez-Calderon & Luck, 2014), the continuous EEG was 

referenced to the average of the mastoids and high pass filtered at 0.05 Hz, then epochs were 

extracted from 200 ms before to 1100 ms after each letter and baseline corrected by subtracting 

the mean voltage from -200 to 0 ms of each epoch.  

The AX-CPT task consisted of 400 trials with two events in each trial for a total of 800 

epochs. Trials with artifact (blinks, eye movements, bad channels, etc.) were detected via 

algorithms implemented in ERPLAB and discarded. The remaining trials were low-pass filtered at 

30 Hz, down-sampled to 128 Hz, and used to extract epochs of background EEG noise. For each 

epoch, the averaged waveform (i.e., the ERP) of the condition for that epoch was subtracted from 

the raw EEG. For example, for an X following an A, the average waveform for all X’s following A’s 

was subtracted. This removes (an estimate of) the event-related activity and leaves the EEG 

background noise (which sums and averages to zero across all trials within and across conditions). 

 Studies were simulated by drawing a random subset of subjects, then drawing a random 

subset of their noise trials and randomly assigning these to conditions. This procedure creates a 

situation in which the null hypothesis is known to be true (all conditions are drawn from the same 
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population) and the distribution and structure of variability of the EEG across time and space is 

realistic. The statistical test of interest was then performed for each stimulated study, and the Type 

I error rate was recorded as the percentage of studies showing a significant effect at any time 

point or electrode. 

To test power, realistic effects were drawn from ERP data collected in our lab (studies 

described below) by the following procedure. 1) The conditions of interest were taken from grand 

mean ERPs and low pass filtered at 7.5 Hz to remove high frequency noise. 2) All time points 

before and after the time window containing the effect of interest were set to the average of all 

the conditions so that the null hypothesis was known to be true at these time points. Studies were 

then simulated via the procedure described above with the additional step that the ERP effect 

was added to the averaged noise for each study. Individual differences were simulated by 

multiplying the waveform for the added effect by a value randomly drawn from a normal 

distribution with a mean of 1 and standard deviation of .1 for each subject for each condition. In 

other words, the size of the effect varied somewhat from subject to subject, as would be the case 

in a real experiment. Power was calculated as the percentage of studies showing a significant 

effect at any time point or electrode. 

Simulations of the Type I error rate of approximate tests 

 In the first four simulations, I tested the Type I error rate of the approximate method of 

calculating an interaction effect. For all these simulations, I tested the two-way interaction effect 

in a 3 x 3 design, which is the simplest design for which the approximate method would be 

required.27 This effect was calculated with simulated studies where the null was known to be true 

                                                
27 Generally speaking, the Type I error rate will be closer to the nominal α as the number of levels in each 
factor increases. This is because as the number of levels increases, the amount of data increases faster 
than the number of means that need to be calculated to form the residuals (e.g., in a 3 x 2 design, 5 means 
must be calculated based on 6 cells of data, whereas in a 3 x 3 design, 6 means must be calculated based 
on 9 cells of data). The 3 x 3 design therefore gives an upper limit for the expected Type I error rate for two-
way interactions in cases where the approximate test is required. 
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as described above. Early and late time windows at all electrodes were examined for both the 

Fmax and cluster mass procedures. Studies consisted of 24 subjects, with 40 trials in each of the 

9 cells of the design. 2,500 studies were simulated. Both the cluster mass and Fmax procedure 

were conducted with 2,500 permutations per test. For the cluster mass procedure, the threshold 

for cluster inclusion was p ≤ .05 uncorrected and channels within approximately 7.5 cm of each 

other (assuming a head circumference of 56 cm) were considered spatial neighbors.28  

The results are shown in Table 3.1. The permutation of residuals method led to only a 

minimally inflated Type I error rate for both methods in both early and late time windows. 

Mult Comp Corr Time Window Type I Error Rate 

cluster mass 0 - 300 0.054 

cluster mass 500 - 900 0.053 

Fmax 0 - 300 0.052 

Fmax 500 - 900 0.058 

Table 3.1: Simulation studies of Type I error rate. Simulations of a null interaction effect for a 3x3 design. 
See text for details of simulation methods and parameters. 

Simulations of power for realistic ERP effects 

 The relative power of the Fmax, cluster mass approach, and the mean window/ROI 

approaches was examined for two common ERP components: the N400 and the P300. For each 

effect several time windows and electrode selections were examined. For the parametric 

approach, amplitude was averaged across all time points and electrodes within the specified 

spatiotemporal ROI. For the cluster mass test, clusters were found within the same time window 

and electrode set. All studies had 24 subjects and 20 trials per condition. 2,500 studies were 

simulated for each effect examined with 2,500 permutations for each Fmax or cluster mass test. All 

cluster mass analyses were conducted with a cluster inclusion threshold of p ≤ .05 uncorrected 

and all channels within approximately 7.5 cm of each other (assuming a head circumference of 

                                                
28 There are a number of parameters, such as filtering, sampling rate, cluster inclusion threshold, spatial 
neighbor threshold, etc. that can affect the power and sensitivity of the Fmax and cluster mass tests. These 
considerations are discussed in Groppe et al. (2011a) and Ch. 13 (online) of Luck (2014).  
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56 cm) were considered spatial neighbors. Power was calculated as the percentage of studies 

where any significant effects were observed. To compare the spatial extent of effects detected by 

the Fmax and cluster mass approaches, for each study showing any significant effect I calculated 

the mean number of time points showing a significant effect (i.e., included in a significant cluster 

or exceeding the Fmax critical value) at any of the centroparietal electrodes where the effects were 

largest (see definition of centroparietal ROI below). This number was then multiplied by the 

number of ms between sampling points (7.8) to put it in units of ms instead of sampling points. 

N400 

 A canonical N400 effect was extracted from a study in which words within sentences were 

either highly expected (high cloze probability) or unexpected (but plausible) in an unconstraining 

context (Wlotko & Kuperberg, 2017). This effect was centroparietally distributed and peaked 

around 430 ms. For the purposes of simulating data, all time points before 200 and after 700 ms 

were set to null effects.  Because this effect was quite large, power would approach or equal 1 for 

standard analysis approaches. The size of the effect relative to the error trials was therefore 

reduced by a third.  

Results of simulations are reported in Table 3.2. In line with many previous studies, I first 

analyzed this effect between 300 and 500 ms at a spatial ROI of 5 centroparietal electrodes (Cz, 

CP1, CPz, CP2, Pz). This represents an a priori prediction that matches where the effect was 

actually observed. Even in this best case scenario for the parametric approach, the cluster mass 

approach had slightly greater power and the Fmax approach had approximately the same power. 

The advantage of the mass univariate approaches became particularly evident when a priori 

assumptions were relaxed. When the effect was examined in a 200 – 600 ms time window at all 

electrodes, the cluster mass approach displayed approximately the same power as in the more 

restrictive time window and continued to have greater power than the parametric approach did in 

the more restrictive time window. The Fmax approach had reduced power, but outperformed the 
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mean amplitude approach. These advantages may be in part due to the fact that the N400 effect 

actually extended beyond the 300 – 500 ms time window. This is likely a common situation (i.e., 

that effects extend beyond the a priori time window in which they are examined). However, to 

examine the impact of including additional null time points, I reran the 200-600 ms full electrode 

analysis with all time points outside 300 – 500 ms set to null. In other words, in this simulation, 

half of the time points examined showed no effect. This had no effect on the mass univariate 

approaches, but significantly reduced power further for the mean amplitude approach. Finally, 

even in a completely bottom-up approach examining the entire epoch at all electrodes, the mass 

univariate approaches showed only moderately reduced power, while power was reduced even 

further for the mean amplitude approach. 

Effect 
Time 

Window Electrodes 

cluster 
mass 
power 

Fmax 
power 

mean 
amplitude 
parametric 

power 

cluster 
temporal 

extent 

Fmax 
temporal 

extent 

N400 300 - 500 
centroparietal 

ROI 0.82 0.77 0.76 144 73 

N400 200 - 600 full 32 0.81 0.68 0.45 186 41 

N400 
(restricted) 200 - 600 full 32 0.79 0.68 0.29 159 39 

N400 0 - 1000 full 32 0.69 0.57 0.15 216 34 

P300 500 - 750 
centroparietal 

ROI 0.39 0.34 0.34 144 45 

P300 400 - 900 full 32 0.25 0.22 0.09 210 29 

P300 0 - 1000 full 32 0.22 0.17 0.08 247 24 

Table 3.2: Simulations studies of power. Power refers to the number of simulated studies in which any 
significant effect was observed. Temporal extent is the average number of time points (in ms) included in 
significant effects. See text for details of simulation methods and parameters. 

The power of the Fmax test was nearly as good as the cluster mass test in the more 

restrictive time windows. However, because calculated power reflects whether any time point and 

electrode combination showed a significant effect, this is somewhat misleading. Examination of 

the temporal extent of significant effects shows that both tests underestimate the true duration of 

the effect, but the cluster mass test had significantly greater sensitivity to the true range of the 

effect. 
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P300 

 A P300 effect was drawn from the 20%, 50%, and 80% conditions of the name-gender 

oddball task described in Chapter 2. This effect peaked around 620 ms and was centroparietally 

distributed. For the purposes of the simulation, all time points before 430 ms and after 980 ms at 

all electrodes were set to the average of the two conditions (i.e., the null hypothesis was true). 

Because this effect was quite large, the size of the effect relative to the error trials was reduced 

by half. 

Results of simulations are reported in Table 3.2. I first analyzed this effect between 500 

and 750 ms at a spatial ROI of 5 centroparietal electrodes (Cz, CP1, CPz, CP2, Pz). This 

represents an a priori prediction that matches the observed effect. Here the power of the cluster 

mass test was slightly greater than the Fmax test or mean amplitude test, which were equivalent. 

When the time window was doubled in size to 400 to 900 ms and all electrodes were examined, 

the power of the mean amplitude test was decreased significantly more than the mass univariate 

tests. In a fully bottom-up test of the entire epoch and all electrodes, the mass univariate tests 

continued to show power reduced moderately from the more restrictive time windows. As 

observed for the N400, the cluster mass test did a significantly better job of approaching the true 

duration of the effect than the Fmax test. 

Discussion 

 The traditional ERP analysis approach utilizing parametric, factorial ANOVA to analyze 

mean (or peak) amplitude across defined time windows suffers from a number of problems. The 

parametric ANOVA relies on several assumptions that are either violated or not known to be met 

by most ERP datasets. And choosing spatial and temporal regions for analysis either involves 

overly restrictive a priori guesses as to where effects will be, or suffers from a multiple 

comparisons problem. Both of these issues can inflate the Type I error rate, however the methods 

available for dealing with them within the traditional mean window parametric approach 
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significantly reduce flexibility and/or reduce power. For reasons laid out in detail in the Introduction, 

to maximize the ability of null hypothesis tests to discriminate between real and spurious findings, 

and therefore to produce analyses we can have confidence in, it is important to both minimize 

Type I error and maximize power. Thus in many cases, a significant effect in the mean amplitude 

parametric approach may not actually offer much evidence of a true effect. The permutation-

based mass univariate approach does not require the parametric assumptions of the traditional 

ANOVA and offers natural ways of making explicit and correcting for multiple comparisons by 

taking account of the structure of the ERP data and ERP effects. Here I explored the properties 

of such tests and their suitability for general use in the analysis of ERP data. 

 First, for some interaction effects, it is not possible to construct a permutation test that 

guarantees the Type I error rate will conform to the nominal α. In these cases, an approximate 

test based on permutation of residuals is required. Here I have shown that, consistent with a 

number of previous simulation studies (Anderson & Ter Braak, 2003; Still & White, 1981; Winkler 

et al., 2014), the Type I error rate for these tests is only very modestly inflated for realistic ERP 

data. This was true for both the Fmax and cluster mass approaches for both early and late time 

windows in the ERP. These results show that both approaches can be used for complex factorial 

designs with ERP data. 

The simulations examining the power of the permutation-based tests were particularly 

interesting. When examining ROIs conforming to the observed temporal and spatial location of 

the effects, the cluster mass test had greater power than the mean amplitude approach and the 

Fmax approach, which displayed similar power. When wider time windows were used and all 

electrodes were examined, the power of the mass univariate approaches was only moderately 

reduced whereas the mean amplitude approach had significantly less power. The cluster mass 

approach in particular maintained reasonable power even in fully bottom-up analyses with no a 

priori temporal or spatial assumptions. Thus, the mass univariate approaches used here have 
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both greater power than the traditional mean amplitude approach and less sensitivity to the time 

windows and electrodes chosen for analysis. 

Mass univariate approaches are generally portrayed as sacrificing power to maintain the 

Type I error rate in the face of uncertainty. However, this is based on the assumption that mass 

univariate approaches will be used with little a priori temporal or spatial assumptions. Here we 

have shown that when assumptions are matched, permutation-based mass univariate 

approaches actually have greater power than standard analysis approaches. The reasons for this 

become clear upon examination. For the Fmax approach, locations and times where an effect is 

strongest are tested independently, instead of being averaged with locations/times where the 

effect is weaker as with the averaged time window approach. This fact is balanced by the multiple 

comparisons correction, such that the probability that any effect will be found significant is 

comparable in the two approaches when strong a priori predictions are available, but better for 

the Fmax approach when the time window includes many time points/electrodes with null or weak 

effects.  

The cluster mass approach has greater power than the mean amplitude approach 

because it is able to take advantage of more information about an effect. The probability estimate 

(i.e., the p-value) for the cluster mass test takes advantage of the fact that an effect spread across 

many time points and or electrodes is less likely to be due to random EEG noise than a real effect. 

For this reason, it can be more sensitive than the mean amplitude approach that first averages 

across these data points and does not take account of spatial and temporal extent in its probability 

calculation.  

As should be obvious from this description, this test will be particularly powerful for effects 

with a significant temporal and/or spatial extent, such as the P300 and N400 effects examined 

here. This makes it very useful for many common ERP effects; indeed, in many research areas, 

most of the widely studied effects are of this type (e.g., the N400, P300, LPP, LRP, P600, etc.). 
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However, the cluster mass test may have low power for short-lived, spatially focal components 

(e.g., the P1, N170). Groppe et al. (2011b) report significantly better power for a tmax test than a 

cluster mass test for a focal simulated N170 component. However, they did not compare either 

mass univariate approach to a parametric mean amplitude approach and their analyses used a 

very broad ROI of 100 to 900 ms at all electrodes. Obviously the mean amplitude approach 

requires relatively strong a priori predictions to have sufficient power to detect focal effects. It is 

unclear how the power of the Fmax or cluster mass tests would compare given the same a priori 

assumptions, and it will be important for future simulation studies to examine this question.  

Although the Fmax test and the cluster mass test displayed similar power in many 

simulations, it should be noted that this is only in terms of whether an effect is detected at all. The 

Fmax test is still significantly underpowered in terms of showing the temporal (and presumably also 

spatial) extent of an effect. Although the Fmax test is often described as allowing for strong 

conclusions about specific time points and electrodes, this only holds if only Type I errors are of 

concern. The cluster mass test does not allow for statements to be made about individual time 

points and electrodes with any given confidence or risk of Type I error, but the simulation results 

reported here show that in practice it will give a significantly more accurate view of the actual 

extent of an effect. In fact, at least with the standard p ≤ .05 uncorrected threshold for inclusion 

and normal ERP samples sizes, it will probably generally underestimate the true extent of effects, 

but to a significantly smaller degree than the Fmax test. 

Summary and conclusions 

Mass univariate statistics are in many ways a more natural fit for ERP research than traditional 

approaches. Where the standard mean amplitude approach averages over the complex 

spatiotemporal nature of ERP to make it fit a standard parametric ANOVA, mass univariate 

approaches examine data across time and space and take account of the structure of the data, 
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allowing these tests to be less reliant on a priori spatial and temporal assumptions. This allows 

researchers to flexibly identify effects while appropriately maintaining the Type I error rate.  

There have previously been two primary barriers to the wide adoption of mass univariate tests 

in the ERP literature. First, implementations of these tests that handle factorial designs and 

provide tests of interaction effects have not been available. Second, there has been a perception 

that mass univariate statistics involve sacrificing power for flexibility. The software and simulation 

data presented here address both of these concerns.  

Taken together, the results and considerations presented here suggest that, at least for 

relatively broadly distributed components, the cluster mass test in particular has many advantages 

and little disadvantages as compared to traditional mean amplitude analyses or the Fmax test: 

1. In comparison to traditional parametric approaches, the cluster mass test makes less 

assumptions about the population and thus is applicable in a wider array of 

circumstances. 

2. When spatial and temporal assumptions are matched, the cluster mass test has 

greater power than the Fmax or mean amplitude tests. Thus, contrary to common 

portrayals, the utility of the mass univariate approach is not limited to situations in 

which researchers are uncertain where to expect effects. 

3. The cluster mass test is less sensitive to the time window chosen than the Fmax test 

and particularly than the mean amplitude test. It therefore allows greater flexibility and 

uncertainty about the temporal and spatial location of effects while maintaining 

acceptable power. This makes it well suited to exploratory analyses, but, importantly, 

also to analyses where some a priori information is available but not enough to 

completely constrain analyses to a very specific ROI. This additional flexibility also 

reduces the dependence of results on experimenter decisions, which is a positive 

feature even if those decisions are unbiased. 
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4. Taken together, the previous two points mean that the cluster mass test can offer a 

substantial improvement of the positive predictive value (PPV) of significant findings 

over traditional analysis approaches and goes a long way to addressing the tensions 

and dilemmas examined in the Introduction. 

5. Whereas the mean amplitude approach gives only broad boundaries to where an 

effect occurs and the Fmax approach significantly underestimates the extent of effects, 

the cluster mass approach allows for a reasonable bottom-up identification of effects. 

In most cases this will underestimate the true extent of effects, but this is likely true 

with any analysis technique given average sample sizes in ERP research. With a 

highly powered study, the cluster mass technique is likely to give a very good 

approximation of the true extent of effects. 

With the freely available factorial extension to the Mass Univariate Toolbox introduced here 

and the preceding considerations, it appears there is now little reason why the cluster mass test 

should not be widely adopted as the default analysis approach for many common ERP analysis 

situations. No statistical technique can substitute for good theories, strong experimental design, 

and informed and ethical conduct of research, and no statistical technique is appropriate for all 

situations and all research questions. However, it is hoped that the techniques and software 

introduced here can play an important role in addressing the significant issues of evidence and 

reliability raised in the Introduction to this chapter. 
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Summary and General Discussion 

 The three chapters presented here deal with a number of theoretical, empirical, and 

methodological issues in the investigation of the processing of self-relevant and emotional 

information. In Chapter 1 we used functional MRI to investigate activity in a region of the medial 

prefrontal cortex that much previous work has associated with processing self-related information. 

We showed that the self-other effect in this region was modulated by the emotional valence of 

social vignettes: specifically, we only observed a self-other effect for positive scenarios. 

Interestingly, this same region of the mPFC has previously been associated with belief updating 

specifically in respond to positive self-relevant information (Sharot et al., 2011), suggesting that 

activity in this region may play a role in maintaining positive illusions about the self. 

 Chapter 2 presented a theoretical and empirical review of the late positive component 

(LPC) of the ERP commonly evoked by emotional stimuli. An open question in the literature is 

what function (i.e., cognitive process or mechanism) is reflected by this component. In addition to 

being an inherently interesting question, understanding the function of the LPC will likely help us 

to better make sense of the complex and sometimes contradictory set of findings reviewed in 

Chapter. More generally, understanding the neurobiology and function of the LPC will make this 

literature more interesting and informative to psychologists and neuroscientists not inherently 

interested in the LPC as an ERP component, but interested in the neural systems that generate 

it or the cognitive mechanism it reflects. 

Little empirical or theoretical work has been done to understand the function of the LPC, 

but the LPC has often been seen as similar or related to the P300 component of the ERP. I outlined 

a theoretical perspective in which the LPC and P300 are the same component or at least 

represent very similar cognitive mechanisms—namely, a process by which our model of the 

current environment is kept up to date. An initial study examining this hypothesis showed results 
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broadly consistent with it. However, much more research will be required to further test this and 

other theories of the LPC (e.g., Gable et al., 2015). It is hoped that the discussion and results 

presented in Chapter 2 will encourage more researchers to take up the question of a functional 

theory of the LPC. 

Although the first two chapter investigate different questions using different methodologies, 

there are some similarities. In both chapters I suggested that the dependent variable of interest 

(mPFC activation and the LPC) may be related to some form of belief updating. This of course 

make sense: both self-relevance and emotion are indications of information which is important to 

consider and remember, and both lead to better memory. In addition, both the mPFC and LPC 

show interesting interactions between self-relevance and emotion. I don’t mean to suggest that 

the mPFC is a likely generator for the LPC. However, both may be better understood by modelling 

work examining how social and affective factors affect learning and belief updating and it may be 

the future research can explore interconnections between the two in a broader neural network 

sensitive to these factors. 

Above I noted that work examining the function of the LPC will be important to making 

sense of the complicated pattern of findings that have been reported for this component. However, 

it is important to note that drawing conclusions from a review of the literature like that presented 

in Chapter 2 is complicated by a number of methodological and statistical issues (Meehl, 1990; 

Morey & Lakens, 2017). One significant challenge is that both lower power (Szucs & Ioannidis, 

2017) and research practices that inflate the Type I error rate (Luck & Gaspelin, 2017; Simmons 

et al., 2011) are quite common in the ERP literature. Taken together, these factors lead to a high 

rate of spurious findings (Button et al., 2013; Colquhoun, 2014; Ioannidis, 2005). It is obviously 

difficult to interpret a pattern of results when it is likely that a high proportion of them are not 

reliable. 
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Chapter 3 presented work to address one aspect of this problem: how to correct for the 

significant issue of multiple comparisons across time and space in ERP data while maintaining 

sufficient power to detect effects and have confidence in effects we do detect. Results from 

simulation studies with realistic EEG/ERP data showed that permutation-based mass univariate 

statistics—in particularly the cluster mass based test—provide the best balance of Type I error 

rate and power, at least for effects distributed relatively widely across space and time (i.e., most 

later ERP effects). In addition, this chapter presents new software to conduct these tests for 

factorial designs and interaction effects that cannot best tested with currently available software. 

Taken together, this software and simulation results address the two main barriers to widespread 

adoption of these techniques. 
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Appendix 

Functional MRI activation tables 

Table A1: Other-Neutral versus Fixation (whole brain) 

Region R/L 
Peak 

voxel p-
value 

z-
score 

MNI (x, y, z) 

Cluster 
level p-
value 
(FWE) 

Supplementary motor area -- 0.0006 5.82 0, 10, 58 
p(FWE) < 
0.0001, 
k = 565 

Inferior frontal gyrus (pars triangularis) L 0.0301 4.89 -50, 24, 4 p(FWE) < 
0.0001, 
k = 4426 

Middle temporal cortex (anterior) L 0.0011 5.67 -52, 4, -20 

Middle temporal cortex (pole) L 0.0745 4.65 -40, 18, -32 

Precentral gyrus L 0.0039 5.39 -38, 0, 50 
p(FWE) = 
0.0001, 
k = 860 

Occipital cortex (calcarine) R 0.0515 4.75 18, -66, 10 
p(FWE) < 
0.0001, 
k = 1890 
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Table A2: Other-Positive versus Fixation (whole brain) 
 

Region R/L 
Peak voxel 

p-value 
z-score MNI (x, y, z) 

Cluster level 
p-value 
(FWE) 

Inferior frontal gyrus (pars triangularis) L 0.0540 4.80 -54, 22, 6 p(FWE) < 
0.0001, 
k = 4370 Middle temporal cortex (anterior) L 0.0001 6.21 -54, -4, -16 

Occipital cortex (lingual) L 0.0161 5.11 -14, -30, -4 
p(FWE) = 
0.0437, 
k = 228 

Supplementary motor area L 0.0165 5.11 -4, 12, 56 
p(FWE) = 
0.0009, 
k = 516 

Occipital cortex (lateral) L 0.0324 4.94 -16, -94, -8 
p(FWE) < 
0.0001, 
k = 4675 

Precentral gyrus L 0.0771 4.71 -38, -2, 54 
p(FWE) < 
0.0001, 
k = 969 

Middle temporal cortex (pole) R 0.0813 4.69 56, 6, -16 
p(FWE) < 
0.0001, 
k = 773 
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Table A3: Other-Negative versus Fixation (whole brain) 

Region R/L 
Peak voxel 

p-value 
z-

score 
MNI (x, y, z) 

Cluster 
level p-
value 
(FWE) 

Inferior frontal gyrus (pars opercularis) L 0.0113 5.09 -56, 18, 18 

p(FWE) < 
0.0001, 
k = 5760 

Inferior frontal gyrus (pars triangularis) L 0.0090 5.14 -58, 20, 24 

Inferior frontal gyrus (pars orbitalis) L 0.0038 5.34 -46, 24, -6 

Superior temporal cortex (pole) L 0.0161 5.00 -46, 8, -22 

Middle temporal cortex (posterior) L 0.0639 4.64 -56, -48, 14 

Middle temporal cortex (anterior) L 0.0003 5.89 -54, -26, -4 

Middle temporal cortex (anterior) R 0.0449 4.73 62, 0, -16 p(FWE) < 
0.0001, 
k = 1906 

Middle temporal cortex (pole) R 0.0186 4.96 44, 18, -30 

Supplementary motor area L 0.0782 4.58 -2, 10, 62 p(FWE) = 
0.0003, 
k = 921 Superior frontal cortex (medial) L 0.0328 4.82 -8, 60, 42 

Precentral gyrus L 0.0358 4.79 -38, -2, 56 
p(FWE) = 
0.0008, 
k = 781 

Occipital cortex (calcarine) R 0.0568 4.67 20, -90, -2 
p(FWE) < 
0.0001, 
k = 2113 

Occipital cortex (lateral) L 0.0676 4.62 -34, -92, -4 
p(FWE) < 
0.0001, 
k = 2481 
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Table A4: Self-Neutral versus Fixation (whole brain) 

Region R/L 
Peak 

voxel p-
value 

z-score MNI (x, y, z) 

Cluster 
level p-
value 
(FWE) 

Inferior frontal gyrus (pars opercularis) L 0.0030 5.49 -52, 18, 20 

p(FWE) < 
0.0001, 
k = 4967 

Inferior frontal gyrus (pars triangularis) L 0.0098 5.22 -54, 22, 2 

Inferior frontal gyrus (pars orbitalis) L 0.0207 5.04 -48, 24, -8 

Middle temporal cortex (posterior) L 0.0459 4.83 -56, -44, 4 

Middle temporal cortex (anterior) L 0.0003 5.94 -54, -4, -16 

Precentral gyrus L 0.0129 5.15 -38, 0, 50 
p(FWE) < 
0.0001, 
k = 1104 

Occipital cortex (lingual) L 0.0553 4.78 -20, -88, -14 p(FWE) < 
0.0001, 
k = 2460 Occipital cortex (lateral) L 0.0217 5.03 -24, -104, -2 

Occipital cortex (calcarine) R 0.0852 4.67 20, -90, -2 p(FWE) < 
0.0001, 
k = 1876 Occipital cortex (lateral) R 0.0251 4.99 40, -86, -8 

Superior frontal cortex (lateral) L 0.0547 4.79 -14, 32, 64 
p(FWE) = 
0.0028, 
k = 444 

 

  



www.manaraa.com

  118 

 

Table A5: Self-Positive versus Fixation (whole brain) 

Region R/L 
Peak 

voxel p-
value 

z-
score 

MNI (x, y, z) 
Cluster level p-

value (FWE) 

Inferior frontal gyrus (pars triangularis) L 0.0228 4.98 -52, 22, 0 

p(FWE) < 
0.0001, 
k = 5426 

Inferior frontal gyrus (pars orbitalis) L 0.0192 5.02 -50, 24, -4 

Superior temporal cortex (pole) L 0.0728 4.67 -44, 10, -22 

Middle temporal cortex (posterior) L 0.0031 5.45 -54, -30, -2 

Middle temporal cortex (anterior) L 0.0022 5.53 -52, -4, -18 

Precentral gyrus L 0.0026 5.49 -44, -16, 62 
p(FWE) < 
0.0001, 
k = 1442 

Supplementary motor area R 0.0158 5.07 2, 10, 60 p(FWE) < 
0.0001, 
k = 1091 Superior frontal cortex (medial) L 0.0331 4.88 -6, 64, 28 

Occipital cortex (calcarine) R 0.0323 4.89 18, -90, 2 p(FWE) < 
0.0001, 
k = 5228 

Occipital cortex (lingual) L 0.0694 4.69 -20, -90, -14 

Occipital cortex (lateral) R 0.0608 4.72 40, -86, -8 

Superior temporal cortex (pole) R 0.0696 4.69 42, 12, -24 
p(FWE) < 
0.0001, 
k = 1028 
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Table A6: Self-Negative versus Fixation (whole brain) 

Region R/L 
Peak voxel 

p-value 
z-

score 
MNI (x, y, z) 

Cluster 
level p-
value 
(FWE) 

Inferior frontal gyrus (pars opercularis) L 0.0938 4.64 -50, 18, 20 

p(FWE) < 
0.0001, 
k = 5855 

Inferior frontal gyrus (pars orbitalis) L 0.0025 5.54 -46, 24, -4 

Superior temporal cortex (pole) L 0.0846 4.67 -46, 24, -14 

Middle temporal cortex (anterior) L 0.0000 6.78 -52, -8, -18 

Middle temporal cortex (pole) L 0.0022 5.57 -44, 12, -30 

Inferior temporal cortex (anterior) L 0.0796 4.68 -44, -8, -30 

Precentral gyrus L 0.0002 5.97 -40, 0, 58 
p(FWE) < 
0.0001, 
k = 929 

Superior temporal cortex (pole) R 0.0052 5.37 46, 12, -22 p(FWE) < 
0.0001, 
k = 1419 

Middle temporal cortex (anterior) R 0.0007 5.79 54, 4, -18 

Middle temporal cortex (pole) R 0.0756 4.70 48, 18, -34 

Supplementary motor area L 0.0223 5.02 -4, 10, 56 p(FWE) < 
0.0001, 
k = 1419 Superior frontal cortex (medial) L 0.0202 5.04 -10, 56, 46 

Occipital cortex (lingual) L 0.0349 4.91 -20, -90, -12 p(FWE) < 
0.0001, 
k = 2698 Occipital cortex (lateral) L 0.0226 5.02 -16, -96, -8 

Occipital cortex (calcarine) R 0.0817 4.68 20, -88, 0 p(FWE) < 
0.0001, 
k = 2117 Occipital cortex (lateral) R 0.0312 4.93 42, -86, -8 
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Table A7: Each Condition versus Fixation in the mPFC ROI 

Region R/L 
Peak 
voxel 

p-value 

z-
score 

MNI (x, y, z) 
Cluster level p-value 

(FWE) 

Self Relevant Positive – Fixation 

Superior frontal cortex (lateral) L 0.0266 4.34 -10, 60, 38 

p(FWE) < 0.0001, k = 727 Supplementary motor area L 0.0487 4.16 -8, 18, 68 

Superior frontal cortex (medial) L 0.0036 4.88 -6, 64, 28 

Self Relevant Neutral – Fixation 

Superior frontal cortex (lateral) L 0.0059 4.79 -14, 32, 64 
p(FWE) = 0.0003, k = 444 

Superior frontal cortex (medial) L 0.0187 4.48 -10, 64, 26 

Self Relevant Negative – Fixation 

Superior frontal cortex (lateral) L 0.0021 5.04 -10, 56, 46 

p(FWE) < 0.0001, k = 970 Supplementary motor area L 0.0506 4.18 -4, 18, 70 

Superior frontal cortex (medial) L 0.0063 4.77 -8, 60, 26 

Other Relevant Positive – Fixation 

Supplementary motor area L 0.0122 4.61 -8, 18, 66 p(FWE) = 0.0165, k = 157 

Superior frontal cortex (lateral) L 0.0202 4.47 -12, 58, 42 p(FWE) = 0.0359, k = 115 

Other Relevant Neutral – Fixation 

Superior frontal cortex (medial) L 0.0523 4.11 -10, 64, 30 p(FWE) = 0.0433, k = 123 

Other Relevant Negative – Fixation 

Superior frontal cortex (lateral) L 0.0857 3.89 -12, 36, 62 

p(FWE) = 0.0006, k = 562 Supplementary motor area L 0.0111 4.51 -8, 24, 70 

Superior frontal cortex (medial) L 0.0035 4.82 -8, 60, 42 
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